Abstract:
In one example a electronic device comprises a housing, at least one heat generating component disposed within the housing, at least one internal heat dissipation device positioned proximate the at least one heat generating component, and a thermal interface defined in at least a portion of the housing to allow direct thermal contact between the heat dissipation device and an external heat dissipation device. Other examples may be described.
Abstract:
A wearable device for binaural audio is described. The wearable device includes a feedback mechanism, a microphone, an always on binaural recorder (AOBR), and a processor. The AOBR is to capture ambient noise via the microphone and interpret the ambient noise. An alert is issued by the processor to the feedback mechanism based on a notification detected via the microphone in the ambient noise.
Abstract:
Heat spreading cloths, associated devices, systems, and methods can include a plurality of attached polymeric fibers that are thermally conductive and electrically insulative. The heat spreading cloth can be configured to couple an electronic component thereto in a heat spreading relationship.
Abstract:
Apparatuses, systems and methods associated with flexible heat spreader design are disclosed herein. In embodiments, an electronic device may include a component, a heat dissipation member, and a flexible member. The heat dissipation member may be coupled to the component via a flexible portion of the electronic device, the component located on a first side of the flexible portion and the heat dissipation member located on a second side of the flexible portion. The flexible member may be thermally coupled to the component and the heat dissipation member, wherein the flexible member extends along the flexible portion from the first side to the second side and is to transfer heat from the component to the heat dissipation member. Other embodiments may be described and/or claimed.
Abstract:
Methods and apparatus relating to IoT (Internet of Things) and/or cloud enabled faster ambulances are described. In an embodiment, an IoT device overrides an operating state of an illumination device based at least in part on a wireless signal that indicates approachment of a moving object. The IoT device then cancels the override of the operating state of the illumination device based at least in part on an indication that the moving object has crossed a location of the illumination device. In one embodiment, cloud-based logic determines whether and/or when the IoT device causes the override of the operating state of the illumination device. Other embodiments are also disclosed and claimed.
Abstract:
Briefly, in accordance with one or more embodiments, a smart base for a baseball system or a softball system comprises a sensor to detect a first time at which a runner has touched the smart base, a radio-frequency (RF) receiver to receive a signal from a smart baseball that indicates a second time at which the smart baseball was caught, timing circuitry to detect if the second time occurs before or after the first time; and indicator circuitry to indicate a force out if the second time occurs before the first time.
Abstract:
Techniques related to coordinating power management for multiple devices are discussed. Such techniques may include establishing communications between devices, inventorying the components of each device, and implementing a power management plan to eliminate any redundancy in the components and reduce the total power consumed by the devices.
Abstract:
Embodiments of an apparatus, system, method and techniques are described for an improved volumetric resistance blower and rotor. An apparatus may comprise, for example a motor, a casing having one or more inlets and one or more outlets, and a cylindrical rotor to create a volumetric resistance inside the casing, at least a portion of the rotor comprising a porous material. Other embodiments are described.
Abstract:
An electronic device is provided that includes a base, a processor, and a tablet having a front surface, a rear surface and a bottom edge surface. A processor may operate at a first operating condition when the tablet is coupled to the base, and the processor may operate at a second operating condition when the tablet is not coupled to the base. The tablet may include a heat conducting device and an active edge. The heat conducting device may conduct heat from the processor to the active edge where the heat may be dissipated using supplemental cooling.
Abstract:
Particular embodiments described herein provide for an electronic device that could include a keyboard portion, an attachment mechanism, and a pump located in the keyboard portion that creates a pressure differential in the attachment mechanism such that a display portion can be attached to the keyboard portion. Other particular embodiments described herein provide for an electronic device that could include a display portion, an attachment mechanism located on the display portion, and a pump located in the display portion that can create a pressure differential in the attachment mechanism such that the display portion can be attached to a surface or device.