摘要:
Refractory metal ELOG mask are used for GaN based VCSELs and edge emitter structures to serve as intracavity contacts. In these structures the refractory metal ELOG masks serve both as ohmic contact metals as well as masks for ELOG.
摘要:
The present invention provides a ring laser system comprising forming an optical core by an epitaxial layer overgrowth over an intermediate layer, forming multi-quantum wells adjacent to the optical core and forming an outer structure further comprising a total internal reflector, wherein forming photons within the multi-quantum wells further comprises circulating the photons within the ring laser structure comprising the outer structure, the multi-quantum wells, and the optical core.
摘要:
A light emitting device having a buried photonic bandgap (PBG) structure is created using a relatively simple fabrication method known as epitaxial layer overgrowth (ELOG). By burying the PBG structure, the difficulties and disadvantages associated with the known technique of etching holes into a LED emission surface to form the PBG structure are avoided.
摘要:
A buried heterostructure quantum cascade laser structure uses reverse biased junction to achieve current blocking. Doping and ridge width of the structure may be adjusted to provide effective mode discrimination.
摘要:
The group III-V semiconductor device comprises a quantum well layer, barrier layers sandwiching the quantum well layer and a region of a third semiconductor material formed by spatially-selective intermixing of atoms on the group V sublattice between the first semiconductor material of the quantum well layer and the second semiconductor material of the barrier layer. The quantum well layer is a layer of a first semiconductor material that has a band gap energy and a refractive index. The barrier layers are layers of a second semiconductor material that has a higher band gap energy and a lower refractive index than the first semiconductor material. The third semiconductor material has a band gap energy and a refractive index intermediate between the band gap energy and the refractive index, respectively, of the first semiconductor material and the second semiconductor material.
摘要:
An index-guided buried heterostructure AlGalnN laser diode provides improved mode stability and low threshold current when compared to conventional ridge waveguide structures. A short period superlattice is used to allow adequate cladding layer thickness for confinement without cracking. The intensity of the light lost due to leakage is reduced by about 2 orders of magnitude with an accompanying improvement in the far-field radiation pattern when compared to conventional structures.
摘要:
Various asymmetric InGaAsN VCSEL structures that are made using an MOCVD process are presented. Use of the asymmetric structure effectively eliminates aluminum contamination of the quantum well active region.
摘要:
A distributed feedback structure includes a substrate material. An active layer has an alloy including at least one of aluminum, gallium, indium, and nitrogen. A first cladding, having an alloy including at least one of the aluminum, the gallium, the indium, and the nitrogen, is on a first side of the active layer. A second cladding, having an alloy including at least one of the aluminum, the gallium, the indium, and the nitrogen, is on a second side of the active layer. Periodic variations of refractive indices in at least one of the first and second claddings provide a distributed optical feedback.
摘要:
A structure and method for an asymmetric waveguide nitride laser diode without need of a p-type waveguide is disclosed. The need for a high aluminum tunnel barrier layer in the laser is avoided.
摘要:
A method for placing nitride laser diode arrays on a thermally conducting substrate is described. The method uses an excimer laser to detach the nitride laser diode from the sapphire growth substrate after an intermediate substrate has been attached to the side opposite the sapphire substrate. A thermally conducting substrate is subsequently bonded to the side where the sapphire substrate was removed.