Abstract:
A bioreactor system includes a support housing having an interior surface bounding a compartment, the support housing having a sidewall with an opening extending therethrough and communicating with the compartment. A rack is secured to the support housing in alignment with the opening. An elongated first shaft has a first end and an opposing second end, the first end of the first shaft being secured to the rack so that the second end of the first shaft projects outwardly away from the sidewall of the support housing. A structure is secured to the first shaft towards the second end of the first shaft, the structure outwardly projecting away from the first shaft. A collapsible bag bounds a chamber and is at least partially disposed within the compartment of the support housing. A member projects from the collapsible bag and passes through the opening on the sidewall, the structure restraining movement of the member.
Abstract:
A system for performing a gas-liquid mass transfer includes a container bounding a compartment and having a top wall, a bottom wall, and an encircling sidewall extending therebetween. A first opening is formed on the container so as to communicate with the compartment. A liquid is disposed within the compartment and having a top surface disposed below the first opening. A gas is blown through the first opening so that the gas passes over at least a portion of the top surface of the liquid, the gas producing turbulence on the top surface of the liquid that is sufficient to produce a mass transfer between the gas and the liquid. A mixing element is disposed within the compartment.
Abstract:
A container includes a first wall made of a polymeric material, a second wall made of a polymeric material, and a plurality of elongated baffles, spacers or seam lines formed between the first wall and the second wall to form a plurality of separate fluid flow paths. Each of the plurality of fluid flow paths are separated from the other fluid flow paths by at least one of the baffles, spacers or seam lines. Each of the plurality of fluid flow paths have a first end in fluid communication with an inlet and have a second end in fluid communication with an outlet.
Abstract:
A system for sterilizing a fluid includes a sterilization container bounding a fluid flow path that can be coupled with a fluid source. The sterilization container is comprised of one or more polymeric walls. A beam generator is configured to direct a beam of electromagnetic radiation through at least a portion of the fluid flow path of the sterilization container, the beam of electromagnetic radiation being sufficient to sterilize a fluid within the fluid flow path.
Abstract:
A heat exchanger system includes a heat exchanger having a body with a first side face and an opposing second side face, the body bounding a fluid channel disposed between the opposing side faces and extending between an inlet port and an outlet port. A flexible first bag has of one or more sheet of polymeric material and bounds a fluid pathway that extends between a fluid inlet and a fluid outlet. The first bag is removably retained against the first side face of the body of the heat exchanger, the fluid channel of the body of the heat exchanger being sealed from fluid communication with the fluid pathway of the first bag.
Abstract:
A system for performing a gas-liquid mass transfer includes a container bounding a compartment and having a top wall, a bottom wall, and an encircling sidewall extending therebetween. A first opening is formed on the container so as to communicate with the compartment. A liquid is disposed within the compartment and having a top surface disposed below the first opening. A gas is blown through the first opening so that the gas passes over at least a portion of the top surface of the liquid, the gas producing turbulence on the top surface of the liquid that is sufficient to produce a mass transfer between the gas and the liquid. A mixing element is disposed within the compartment.
Abstract:
A fluid mixing system includes a support housing having an interior surface bounding a compartment, the support housing having a floor and a sidewall upstanding therefrom, an opening extending through the sidewall and communicating with the compartment. An elongated rack is disposed on the support housing adjacent to the opening. A first hanger includes an elongated shaft having a first end and an opposing second end, the first end of the shaft being removably mounted to the rack so that the second end projects outwardly away from the sidewall of the support housing, the second end of the shaft having a fastener disposed thereat.
Abstract:
A container system includes a bag having of one or more sheets of flexible polymeric material, the bag having an interior surface at least partially bounding a chamber that is adapted to hold a fluid. A sparger is secured to the interior surface of the bag so that a compartment is formed between the interior surface of the bag and the sparger. At least a portion of the sparger includes a sparging sheet formed from a flexible sheet of a gas permeable material. A tubular port or tube is coupled with the bag so that a passage bounded by the tubular port or tube communicates with the compartment.
Abstract:
A container system includes a flexible bag bounding a chamber. A probe port includes an elongated tubular member having an interior surface bounding a first passageway and extending between a first end and an opposing second end, the first passageway being closed at the first end and open at the second end; and a flange encircling and radially outwardly projecting from the tubular member at or toward the second end thereof, the flange being secured to the flexible bag so that the first end of the elongated tubular member projects into the chamber of the flexible bag while the open second end of the elongated tubular member is accessible from outside of the flexible bag. A probe is received within the first passageway of the probe port.
Abstract:
A fluid mixing system includes a support housing having an interior surface bounding a chamber. A flexible bag is disposed within the chamber of the support housing, the flexible bag having an interior surface bounding a compartment. An impeller is disposed within the chamber of the flexible bag. A drive shaft is coupled with the impeller such that rotation of the drive shaft facilitates rotation of the impeller. A drive motor assembly is coupled with the draft shaft and is adapted to rotate the drive shaft. An adjustable arm assembly is coupled with the drive motor assembly and is adapted to move the drive motor assembly which in turn moves the position of the drive shaft and impeller. An electrical controller can control movement of the adjustable arm.