摘要:
A transistor is described having a source electrode and a drain electrode. The transistor has at least one semiconducting carbon nanotube that is electrically coupled between the source and drain electrodes. The transistor has a gate electrode and dielectric material containing one or more quantum dots between the carbon nanotube and the gate electrode.
摘要:
A transistor is described having a source electrode and a drain electrode. The transistor has at least one semiconducting carbon nanotube that is electrically coupled between the source and drain electrodes. The transistor has a gate electrode and dielectric material containing one or more quantum dots between the carbon nanotube and the gate electrode.
摘要:
A group III-V material device may have a capping layer on a barrier region, which may provide a high quality interface for a high-k gate dielectric. This may improve the performance of the device by reducing gate leakage and preserve the high-mobility properties of the quantum well channel region of the device.
摘要:
Embodiments of the invention include apparatuses and methods relating to directed carbon nanotube growth using a patterned layer. In some embodiments, the patterned layer includes an inhibitor material that directs the growth of carbon nanotubes.
摘要:
Reducing contact resistance in p-type field effect transistors is generally described. In one example, an apparatus includes a first semiconductor substrate, a first noble metal film including palladium (Pd) coupled with the first semiconductor substrate, a second noble metal film including platinum (Pt) coupled with the first noble metal film, and a third metal film including an electrically conductive metal coupled with the second noble metal film, wherein the first, second, and third metal films form one or more contacts having reduced specific contact resistance between the first semiconductor substrate and the one or more contacts.
摘要:
A transistor is described having a source electrode and a drain electrode. The transistor has at least one semiconducting carbon nanotube that is electrically coupled between the source and drain electrodes. The transistor has a gate electrode and dielectric material containing one or more quantum dots between the carbon nanotube and the gate electrode.
摘要:
Embodiments of the present disclosure describe multi-device flexible systems on a chip (SOCs) and methods for making such SOCs. A multi-material stack may be processed sequentially to form multiple integrated circuit (IC) devices in a single flexible SOC. By forming the IC devices from a single stack, it is possible to form contacts for multiple devices through a single metallization process and for those contacts to be located in a common back-plane of the SOC. Stack layers may be ordered and processed according to processing temperature, such that higher temperature processes are performed earlier. In this manner, intervening layers of the stack may shield some stack layers from elevated processing temperatures associated with processing upper layers of the stack. Other embodiments may be described and/or claimed.
摘要:
Transistors suitable for high voltage and high frequency operation. A nanowire is disposed vertically or horizontally on a substrate. A longitudinal length of the nanowire is defined into a channel region of a first semiconductor material, a source region electrically coupled with a first end of the channel region, a drain region electrically coupled with a second end of the channel region, and an extrinsic drain region disposed between the channel region and drain region. The extrinsic drain region has a wider bandgap than that of the first semiconductor. A gate stack including a gate conductor and a gate insulator coaxially wraps completely around the channel region, and drain and source contacts similarly coaxially wrap completely around the drain and source regions.
摘要:
Architectures and techniques for co-integration of heterogeneous materials, such as group III-V semiconductor materials and group IV semiconductors (e.g., Ge) on a same substrate (e.g. silicon). In embodiments, multi-layer heterogeneous semiconductor material stacks having alternating nanowire and sacrificial layers are employed to release nanowires and permit formation of a coaxial gate structure that completely surrounds a channel region of the nanowire transistor. In embodiments, individual PMOS and NMOS channel semiconductor materials are co-integrated with a starting substrate having a blanket layers of alternating Ge/III-V layers. In embodiments, vertical integration of a plurality of stacked nanowires within an individual PMOS and individual NMOS device enable significant drive current for a given layout area.
摘要:
Embodiments of an apparatus and methods for providing three-dimensional complementary metal oxide semiconductor devices comprising modulation doped transistors are generally described herein. Other embodiments may be described and claimed, which may include a modulation doped heterostructure, wherein the modulation doped heterostructure may comprise an active portion having a first bandgap and a delta doped portion having a second bandgap.