Abstract:
The present invention provides a compounds the formula (IV): and methods for producing an α-(phenoxy)phenylacetic acid compound of the formula: wherein R1 is a member selected from the group consisting of: each R2 is a member independently selected from the group consisting of (C1-C4)alkyl, halo, (C1-C4)haloalkyl, amino, (C1-C4)aminoalkyl, amido, (C1-C4)amidoalkyl, (C1-C4)sulfonylalkyl, (C1-C4)sulfamylalkyl, (C1-C4)alkoxy, (C1-C4)heteroalkyl, carboxy and nitro; the subscript n is 1 when R1 has the formula (a) or (b) and 2 when R1 has the formula (c) or (d); the subscript m is an integer of from 0 to 3; * indicates a carbon which is enriched in one stereoisomeric configuration; and the wavy line indicates the point of attachment of R1; and compounds
Abstract:
The present invention is directed to certain novel triazole compounds represented by Formula I and pharmaceutically acceptable salts, solvates, hydrates, and prodrugs thereof. The present invention is also directed to methods of making and using such compounds and pharmaceutical compositions containing such compounds to treat or control a number of diseases mediated by PPAR such as glucose metabolism, lipid metabolism and insulin secretion, specifically Type 2 diabetes, hyperinsulemia, hyperlipidemia, hyperuricemia, hypercholesteremia, atherosclerosis, one or more risk factors for cardiovascular disease, Syndrome X, hypertriglyceridemia, hyperglycemia, obesity, and eating disorders.
Abstract:
A method of forming a dielectric layer suitable for use as the gate dielectric layer of a metal-oxide-semiconductor field effect transistor (MOSFET) includes oxidizing the surface of a silicon substrate, forming a metal layer over the oxidized surface, and reacting the metal with the oxidized surface to form a substantially intrinsic layer of silicon superjacent the substrate, wherein at least a portion of the silicon layer may be an epitaxial silicon layer, and a metal oxide layer superjacent the silicon layer. In a further aspect of the present invention, an integrated circuit includes a plurality of MOSFETs, wherein various ones of the plurality of transistors have metal oxide gate dielectric layers and substantially intrinsic silicon layers subjacent the metal oxide dielectric layers.
Abstract:
The invention relates to a method of forming reduced feature size spacers. The method includes providing a semiconductor substrate having an area region; patterning a first spacer over a portion of the area region of the substrate, the first spacer having a first thickness and opposing side portions; patterning a pair of second spacers, each second spacer adjacent to a side portion of the first spacer, each second spacer having a second thickness in opposing side portions, wherein the second thickness is less than the first thickness; removing the first spacer; patterning a plurality of third spacers, each third spacer adjacent to one of the side portions of one of the second spacers, each one of the third spacers having a third thickness, wherein the third thickness is less than the second thickness; and removing the second spacers. The invention also relates to a field of effect transistor. The transistor includes a semiconductor substrate having a source region and a drain region; a gate area of the substrate surface; a channel region in the substrate having a cross-sectional area defined by a portion of the gate area, a channel length measured accross a portion of the channel region between the source region and the drain region; and a trench formed in a portion of the channel region, the trench having a trench length substantially equivalent to the channel length.
Abstract:
A low dielectric constant material, suitable for use as an interlayer dielectric in microelectronic structures includes a porous silicon oxide layer. In a further aspect of the present invention, a porous oxide of silicon is formed by the room temperature oxidation of porous silicon. The room temperature oxidation is achieved by exposing a porous silicon layer to a solution of hydrochloric acid, hydrogen peroxide, and water, in the presence of a metal catalyst.
Abstract:
A method of fabricating a feature on a substrate is disclosed. In a described embodiment the feature is the gate electrode of an MOS transistor. In this embodiment a polysilicon layer is formed on the substrate. Next, an edge definition layer of silicon nitride is formed on the feature layer. Then, a patterned edge definition layer of silicon dioxide is formed on the first edge definition layer. Then, a silicon nitride spacer is formed adjacent to an edge of the patterned second edge definition layer. Finally, the polysilicon layer is etched, forming the transistor gate electrode from the polysilicon that remains under the spacer.
Abstract:
A method of fabricating a feature on a substrate is described. In one embodiment, the fabricated feature is the gate electrode of an MOS transistor. A feature layer is formed on the substrate with a patterned edge definition layer then formed on the feature layer. Next, a spacer layer is formed adjacent to an edge of the patterned edge definition layer. Finally, the feature layer is etched, forming the transistor gate electrode from the feature layer that remains under the spacer.
Abstract:
Methods, systems, and devices for wireless communications are described. A user equipment (UE) measure and report cell measurements for neighboring cells to assist the wireless network with handover decisions. In some cases, the UE may be configured to report beam-level measurements for just a subset of neighboring cells instead of each neighboring cell. For example, the UE may measure, or report beam measurements for a subset of the neighboring cells which meet configured criteria or are included in a subset of cells configured by the serving cell. Techniques for configuring and maintaining the subset of cells are described herein. For example, the cells in the subset may be configured by the UE or the serving cell of UE. A cell may also be removed from the subset if the cell does not continue to meet criteria for being included in the subset.
Abstract:
The torque sensor has a body. A first gastight chamber is defined at least partly by the body. A pressure sensor is connected with the gastight chamber for measuring the pressure in the gastight chamber. A pressure to torque converter is connected to the pressure sensor. The gastight chamber is arranged to change its volume by deformation of the body when the body is subjected to a torque wherein the volume change causes a change of pressure of the enclosed gas in the gastight chamber.
Abstract:
A thermally driven heat pump includes a low temperature evaporator for evaporating cooling fluid to remove heat A first heat exchanger located at an outlet of a converging/diverging chamber of a first ejector receives a flow of primary fluid vapor and cooling fluid vapor ejected from the first ejector for condensing a portion of the cooling fluid vapor An absorber located in the first heat exchanger absorbs cooling fluid vapor into an absorbing fluid to reduce the pressure in the first heat exchanger A second heat exchanger located at an outlet of a converging/diverging chamber of a second ejector receives primary fluid vapor and cooling fluid vapor ejected from the second ejector for condensing the cooling fluid vapor and the primary fluid vapor A separator in communication with the second ejector, the low temperature evaporator and the primary fluid evaporator separates the primary fluid from the cooling fluid.