摘要:
Optical illumination rather than furnace heating is used to drive in MOSFET source and drain diffusions, preferably using a surface layer of antimony as the dopant source. This results in substantially less overlap between the gate and the source and drain diffusions. Similarly, if the present invention is practiced in a process having gate sidewalls less than zero overlap can be achieved.
摘要:
Isolation trenches are formed around selected areas on an integrated circuit device, and highly doped areas are formed in the epitaxial silicon surrounding such trenches. The device is then oxidized at a low temperature, and differential oxidation growth of the highly doped areas causes a thick field oxide to grow outside the trenches while only a thin oxide grows over the selected areas.
摘要:
In one aspect of the invention, a method for forming an integrated circuit having an at least substantially doped porous dielectric includes forming a semiconductor device. The semiconductor device includes at least a portion of a semiconductor substrate. The method also includes forming a dielectric layer disposed outwardly from the semiconductor substrate and surrounding at least a portion of the semiconductor device. The dielectric layer includes an at least substantially porous dielectric material doped with at least one dopant. In addition, the method includes forming a contact layer disposed outwardly from the dielectric layer and operable to provide electrical connection to the semiconductor device.
摘要:
Porous dielectric layers are produced by introducing small vertical or columnar gaps in pre-formed layers of dense dielectric. The pores may be formed by a special process that is different from the processes employed to form metal lines and other features on a VLSI device. Further, the columnar gaps may be produced after the planarization process for a particular layer has been completed. Then, after the pores are formed, they are capped by depositing another layer of material. In this manner, the newly porous layer is protected from direct exposure to the pressure of subsequent planarization processes. In alternative embodiments, the processes described herein are applied to introduce pores into a preformed layer of semiconductor to produce a porous semiconductor layer.
摘要:
An interconnect structure having refractory sidewalls 240 for enhanced yield, performance and reliability. The primary purpose of the refractory metal 240 is to getter sidewall impurities, residual polymers, and corrosive species by-products from the plasma etch and cleanup processes used to pattern interconnects. In a preferred embodiment, the refractory metal 240 reacts with the conducting layer 210 to form an intermetallic 245 which further enhances the endurance of the metallization against stress-induced rupturing and via-induced electromigration. The disclosed structures and methods are particularly advantageous in “zero-overlap” designs, and aggressive pitch patterns where linewidth and corrosion control are critical, but are also advantageous in “Damascene” pattern definition applications.
摘要:
An intermetal level dielectric with two different low dielectric constant insulators: one for gap filling (140) within a metal level and the other (150) for between metal levels. Preferred embodiments include HSQ (140) as the gap filling low dielectric constant insulator and fluorinated silicon oxide (150) as the between metal level low dielectric constant insulator.
摘要:
A semiconductor device and method for manufacturing same, having a low-dielectric constant material between metal leads in order to decrease unwanted capacitance. A metal layer 114 is deposited on a substrate 112. Metal leads 116 are formed in the metal layer 114. An oxide liner 118 is deposited on the metal leads 116, where the oxide liner 118 has a greater thickness on the tops of the metal leads 116 than on the sides of metal leads. A low-dielectric constant material 120 is deposited over the oxide liner 118 between the metal leads 116, where the low-dielectric constant material 120 is a material with a dielectric constant of less than 3.5.
摘要:
A semiconductor device and process for making the same are disclosed which use porous dielectric materials to reduce capacitance between conductors, while allowing conventional photolithography and metal techniques and materials to be used in fabrication. In one structure, patterned conductors 18 are provided on an interlayer dielectric 10, with a substrate encapsulation layer 32 deposited conformally over this structure. A layer of porous dielectric material 22 (e.g. dried SiO.sub.2 gel) is then deposited to substantially fill the gaps between and also cover the conductors. A substantially solid cap layer 24 of a material such as SiO.sub.2 is then deposited, followed by a photolithography step to define via locations. Vias are etched through the cap layer, and then through the porous dielectric. A via passivating layer 30 is conformally deposited and then anisotropically etched to clear the bottom of the vias while leaving a passivating liner in the via, preventing the via metal from directly contacting the porous material. A second application of these steps may be used to form a second, overlying structure of patterned conductors 38, encapsulating layer 36, porous dielectric layer 40, and cap layer 42.
摘要:
An integrated circuit device including at least one polysilicon resistor 10 is disclosed herein. A polysilicon layer 24 is formed, possibly over a field oxide 12. The polysilicon layer 24 is then doped to achieve a selected sheet resistance. An insulating layer 18 (e.g., an oxide, a nitride, or a combination thereof) is then formed over the polysilicon layer 24. The insulating layer 18 is patterned and etched to define a resistor body 14 in the underlying polysilicon layer 24. The polysilicon layer 24 is then patterned and etched to define first and second resistor heads 16 abutting the resistor body 14 while simultaneously at least one polysilicon element 28 of a second electronic device is formed. Other systems and methods are also disclosed.
摘要:
A method for forming a shallow junction (56) with a relatively thick metal silicide (52) thereover is provided. A first relatively thin layer (38) of a metal is deposited over the surface of a semiconductor substrate. An impurity (40) is then implanted (42) into or through the first layer (38). A relatively thick second layer (48) of metal is deposited over the first layer (38). An anneal process (50) is then performed to out-diffuse the impurities (40) from the first layer (38) into the substrate (32). The anneal also forms a combined metal silicide (52) from the first layer (38) and the second layer (48). The junction (56) thus formed has less surface damage, reduced spiking and reduced implant straggle than junctions formed according to the prior art. An alternate technique is also disclosed wherein an implant into or through a silicide layer is utilized.