Abstract:
Provided is a field-effect transistor (FET) having small off-state current, which is used in a miniaturized semiconductor integrated circuit. The field-effect transistor includes a thin oxide semiconductor which is formed substantially perpendicular to an insulating surface, a gate insulating film formed to cover the oxide semiconductor, and a gate electrode which is formed to cover the gate insulating film. The gate electrode partly overlaps a source electrode and a drain electrode. The source electrode and the drain electrode are in contact with at least a top surface of the oxide semiconductor. In this structure, three surfaces of the thin oxide semiconductor are covered with the gate electrode, so that electrons injected from the source electrode or the drain electrode can be effectively removed, and most of the space between the source electrode and the drain electrode can be a depletion region; thus, off-state current can be reduced.
Abstract:
In a conventional DRAM, when the capacitance of a capacitor is reduced, an error of reading data easily occurs. A plurality of cells are connected to one bit line MBL_. Each cell includes a sub bit line SBL_n_m and 4 to 64 memory cells (a memory cell CL_n_m_1 or the like). Further, each cell includes selection transistors STr1_n_m and STr2_n_m and an amplifier circuit AMP_n_m that is a complementary inverter or the like is connected to the selection transistor STr2_n_m. Since parasitic capacitance of the sub bit line SBL_n_m is sufficiently small, potential change due to electric charge in a capacitor of each memory cell can be amplified by the amplifier circuit AMP_n_m without an error, and can be output to the bit line.
Abstract:
A structure with which the zero current of a field effect transistor using a conductor-semiconductor junction can be reduced is provided. A floating electrode (102) including a conductor or a semiconductor and being enclosed by an insulator (104) is formed between a semiconductor layer (101) and a gate (105) so as to cross the semiconductor layer (101) and the floating electrode (102) is charged, whereby carriers are prevented from flowing from a source electrode (103a) or a drain electrode (103b). Accordingly, a sufficiently low carrier concentration can be kept in the semiconductor layer (101) and thus the zero current can be reduced.
Abstract:
A plurality of writing transistors are connected in series, and a gate of a pass transistor, an input terminal of an inverter, or the like is directly or indirectly connected to each connection portion of the writing transistors. For example, a signal processing device includes first to third pass transistors, one semiconductor layer, and first to third wirings that overlap with the semiconductor layer and do not overlap with each other. Potentials of the first to third wirings can each change conductivities of at least portions of the semiconductor layer that overlap with the respective wirings. Gates of the first to third pass transistors are electrically connected to the semiconductor layer and are brought into a floating state depending on the conductivities of the portions of the semiconductor layer. Conduction between sources and drains of the pass transistors is controlled by potentials of the gates in the floating state.
Abstract:
A method for driving a semiconductor device capable of reducing an area of a multiplexer and reducing its power consumption is provided. In a method for operating a semiconductor device including a memory and a multiplexer, a first transistor is connected to a first capacitor, and a second transistor is connected to a second capacitor. In the multiplexer, in a third transistor, a source is connected to a first input terminal and a drain is connected to an output terminal and, in a fourth transistor, a source is connected to a second input terminal and a drain is connected to the output terminal. Further, a step of holding a first potential in a node to which the first transistor, the first capacitor, and a gate of the third transistor are connected and holding a second potential higher than the first potential in the node is included.
Abstract:
A manufacturing method of a semiconductor device in which the threshold is adjusted is provided. In a semiconductor device including a plurality of transistors arranged in a matrix each including a semiconductor, a source or drain electrode electrically connected to the semiconductor, a gate electrode, and a charge trap layer between the gate electrode and the semiconductor, electrons are trapped in the charge trap layer by performing heat treatment and, simultaneously, keeping a potential of the gate electrode higher than that of the source or drain electrode for 1 second or more. By this process, the threshold increases and Icut decreases. A circuit that supplies a signal to the gate electrode (e.g., word line driver) is provided with a selection circuit formed of an OR gate, an XOR gate, or the like, whereby potentials of word lines can be simultaneously set higher than potentials of bit lines.
Abstract:
A semiconductor device having a novel data input and output panel with high definition is provided. A method for driving the semiconductor device having the novel data input and output panel with high definition is provided. The data input and output panel includes, over a substrate, proximity sensors, signal lines electrically connected to the proximity sensors, and pixels electrically connected to the signal lines. The signal lines can supply image signals to the pixels, can supply control signals to the proximity sensors, and can be supplied with sensing signals from the proximity sensors.
Abstract:
The memory capacity of a DRAM is enhanced. A semiconductor memory device includes a driver circuit including part of a single crystal semiconductor substrate, a multilayer wiring layer provided over the driver circuit, and a memory cell array layer provided over the multilayer wiring layer. That is, the memory cell array overlaps with the driver circuit. Accordingly, the integration degree of the semiconductor memory device can be increased as compared to the case where a driver circuit and a memory cell array are provided in the same plane of a substrate containing a singe crystal semiconductor material.
Abstract:
A highly integrated gain cell-type semiconductor memory is provided. A first insulator, a read bit line, a second insulator, a third insulator, a first semiconductor film, first conductive layers, and the like are formed. A projecting insulator is formed thereover. Then, second semiconductor films and a second gate insulating film are formed to cover the projecting insulator. After that, a conductive film is formed and subjected to anisotropic etching, so that write word lines are formed on side surfaces of the projecting insulator. A third contact plug for connection to a write bit line is formed over a top of the projecting insulator. With such a structure, the area of the memory cell can be 4F2 at a minimum.
Abstract:
In a conventional DRAM, data read errors are more likely to occur along with miniaturization of DRAM A small change in the potential of a first bit line is inverted by a first inverter constituted by an n-channel transistor and a p-channel transistor, and is output to a second bit line through a first selection transistor, which is a first switch. Since the potential of the second bit line is the inverse of the potential of the first bit line, the potential difference between the first bit line and the second bit line is increased. The increased potential difference is amplified by a known sense amplifier, a flip-flop circuit composed of the first inverter and a second inverter (constituted by an n-channel transistor and a p-channel transistor), or the like.