Abstract:
Embodiments of the present disclosure are directed to leadframes having the cantilevered extension that includes an integral support on the end of the lead nearest the die pad. A support integral to the leadframe allows the support to be built to the proper height to support the cantilevered lead in each package and reduces or eliminates the upward, downward, and side to side deflections caused or allowed by supports built-in to the tooling of the manufacturing equipment. Also, by building the support into the leadframe, the leadframes may be pretaped prior to the die attach and wire bonding steps of the manufacturing process.
Abstract:
A semiconductor device may include an IC, and lead frame contact areas adjacent the IC. Each lead frame contact area may have a lead opening. The semiconductor device may include bond wires, each bond wire coupling a respective lead frame contact area with the IC. The semiconductor device may include encapsulation material surrounding the IC, the lead frame contact areas, and the bond wires, and leads. Each lead may extend through a respective lead opening and outwardly from the encapsulation material.
Abstract:
One or more embodiments are directed to semiconductor packages, including stacked packages, with one or more cantilever pads. In one embodiment a recess is located in a substrate of the package facing the cantilever pad. The cantilever pad includes a conductive pad on which a conductive ball is formed. The cantilever pad is configured to absorb stresses acting on the package.
Abstract:
A surface mounting device has one body of semiconductor material such as an ASIC, and a package surrounding the body. The package has a base region carrying the body, a cap and contact terminals. The base region has a Young's modulus lower than 5 MPa. For forming the device, the body is attached to a supporting frame including contact terminals and a die pad, separated by cavities; bonding wires are soldered to the body and to the contact terminals; an elastic material is molded so as to surround at least in part lateral sides of the body, fill the cavities of the supporting frame and cover the ends of the bonding wires on the contact terminals; and a cap is fixed to the base region. The die pad is then etched away.
Abstract:
Embodiments of the present disclosure are directed to leadframe semiconductor packages having die pads with cooling fins. In at least one embodiment, the leadframe semiconductor package includes leads and a semiconductor die (or chip) coupled to a die pad with cooling fins. The cooling fins are defined by recesses formed in the die pad. The recesses extend into the die pad at a bottom surface of the semiconductor package, such that the bottom surfaces of the cooling fins of the die pad are flush or coplanar with a surface of the package body, such as an encapsulation material. Furthermore, bottom surfaces of the cooling fins of the die pad are flush or coplanar with exposed bottom surfaces of the leads.
Abstract:
The present disclosure is directed to a lead frame including a die pad with cavities, and methods for attaching a semiconductor die to the lead frame. The cavities allow for additional adhesive to be formed on the die pad at the corners of the semiconductor die, and prevent the additional adhesive from overflowing on to active areas of the semiconductor die.
Abstract:
The present disclosure is directed to a leadframe having a recess in a body of the leadframe to collect glue overflowing from the manufacturing process of coupling a semiconductor die to the leadframe. The recess extends beneath an edge of the semiconductor die so that any tendency of the glue to adhere to the semiconductor die is counteracted by a tendency of the glue to adhere to a wall of the recess and at least partially fill the volume of the recess. In addition, the recess for collecting adhesive may also form a mold lock on an edge of the leadframe, the mold lock providing a more durable connection between the leadframe and an encapsulant during physical and temperature stresses.
Abstract:
Embodiments of the present disclosure are directed to a leadframe package with recesses formed in outer surface of the leads. The recesses are filled with a filler material, such as solder. The filler material in the recesses provides a wetable surface for filler material, such as solder, to adhere to during mounting of the package to another device, such as a printed circuit board (PCB). This enables strong solder joints between the leads of the package and the PCB. It also enables improved visual inspection of the solder joints after the package has been mounted.
Abstract:
Embodiments of the present disclosure are directed to a leadframe package with recesses formed in outer surface of the leads. The recesses are filled with a filler material, such as solder. The filler material in the recesses provides a wetable surface for filler material, such as solder, to adhere to during mounting of the package to another device, such as a printed circuit board (PCB). This enables strong solder joints between the leads of the package and the PCB. It also enables improved visual inspection of the solder joints after the package has been mounted.
Abstract:
The present disclosure is directed to a lead frame including a die pad with cavities, and methods for attaching a semiconductor die to the lead frame. The cavities allow for additional adhesive to be formed on the die pad at the corners of the semiconductor die, and prevent the additional adhesive from overflowing on to active areas of the semiconductor die.