Abstract:
A single-layer wiring package substrate and a method of fabricating the same are provided, the method including: forming on a carrier a wiring layer having a first surface and a second surface opposing the first surface and being in contact with the carrier; forming on the carrier and on the wiring layer a dielectric body that has a first side having a first opening, from which a portion of the wiring layer is exposed, and a second side opposing the first side and disposed at the same side as the second surface of the wiring layer; and removing the carrier, with the second side of the dielectric body and the second surface of the wiring layer exposed. Therefore, a coreless package substrate is fabricated, and the overall thickness and cost of the substrate are reduced.
Abstract:
A method for fabricating a package structure is provided, which includes the steps of: forming a first insulating layer on a carrier; forming a dielectric body on the first insulating layer, wherein the dielectric body has a first surface formed on the first insulating layer and a second surface opposite to the first surface, and a circuit layer and a plurality of conductive posts formed on the circuit layer are embedded in the dielectric body; forming a second insulating layer on the second surface of the dielectric body, wherein the glass transition temperature of the first insulating layer and/or the second insulating layer is greater than 250° C.; and removing the carrier. Since the glass transition temperature of the first or second insulating layer is greater than that of the dielectric body, the package structure has a preferred strength to avoid warping, thereby dispensing with a support member.
Abstract:
A method for fabricating an electronic package structure is provided, which includes the steps of: forming a circuit layer on a conductor; disposing an electronic element on the circuit layer; forming an insulating layer on the conductor to encapsulate the electronic element and the circuit layer; and removing portions of the conductor so as to cause the remaining portions of the conductor to constitute a plurality of conductive bumps. As such, when the electronic package structure is disposed on a circuit board through an SMT (Surface Mount Technology) process, the conductive bumps are easily aligned with contacts of the circuit board, thereby effectively improving the yield of the SMT process.
Abstract:
A package substrate and a semiconductor package are provided. The package substrate includes an insulating layer having opposing first and second surfaces; a first wiring layer formed in the insulating layer, exposed from the first surface of the insulating layer, and having a plurality of first conductive pads; a second wiring layer formed in the insulating layer, exposed from the second surface, and having a plurality of second conductive pads; a third wiring layer formed on the first surface and electrically connected with the first wiring layer; a plurality of first metal bumps formed on the first conductive pads corresponding; and at least one conductive via vertically embedded in the insulating layer and electrically connected to the second and third wiring layers. Therefore, the surfaces of first conductive pads are reduced, and the non-wetting between the first conductive pads and the solder materials formed on conductive bumps is avoided.
Abstract:
A method of fabricating a package structure is provided. The method includes providing a carrier having two opposing surfaces, forming dielectric bodies on the two surfaces of the carrier, respectively, each of the dielectric bodies having a wiring layer embedded therein and a conductive layer formed on the wiring layer, and removing the carrier. Therefore, the wiring layers, the conductive layers and the dielectric bodies are formed on the two surfaces of the carrier, respectively, and the production yield is thus increased. The present invention further provides the package structure thus fabricated.
Abstract:
A package substrate includes a substrate body having a first surface and a second surface opposite to the first surface; a first circuit layer formed on the first surface and having first conductive pads; a first dielectric layer formed on the first surface and the first circuit; a second circuit layer formed on the first dielectric layer and having second conductive pads; a third circuit layer formed on the second surface and having third conductive pads; a second dielectric layer formed on the second surface and the third circuit layer; a fourth circuit layer formed on the second dielectric layer and having fourth conductive pads; through holes penetrating through the first and second surfaces, and the first and second dielectric layers; and conductive vias penetrating through the through holes and electrically connected to the first, second, third and fourth conductive pads.