摘要:
Techniques for the fabrication of semiconductor devices are provided. In one aspect, a layer transfer structure is provided. The layer transfer structure comprises a carrier substrate having a porous region with a tuned porosity in combination with an implanted species defining a separation plane therein. In another aspect, a method of forming a layer transfer structure is provided. In yet another aspect, a method of forming a three dimensional integrated structure is provided.
摘要:
A memory cell comprises a wordline, a first digital inverter with a first input and a first output, and a second digital inverter with a second input and a second output. Moreover, the memory cell further comprises a first feedback connection connecting the first output to the second input, and a second feedback connection connecting the second output to the first input. The first feedback connection comprises a first resistive element and the second feedback connection comprises a second resistive element. What is more, each digital inverter has an associated capacitance. The memory cell is configured such that reading the memory cell includes applying a read voltage pulse to the wordline. In addition, the first and second resistive elements are configured such that the first and second feedback connections have resistance-capacitance induced delays longer than the applied read voltage pulse.
摘要:
A structure and method to produce an airgap on a substrate having a dielectric layer with a pattern transferred onto the dielectric layer and a self aligned block out mask transferred on the dielectric layer around the pattern.
摘要:
An interconnect structure and method of fabricating the same in which the critical dimension of the conductive features are not altered by a plasma damaged layer are provided. In accordance with the present invention, a chemically etching dielectric material is subjected to a treatment step which modifies the density of the dielectric material such that the treated surfaces become denser than the bulk dielectric not subjected to the treatment. The treatment step is performed prior to deposition of the noble metal liner.
摘要:
In a multilevel microelectronic integrated circuit, air comprises permanent line level dielectric and ultra low-K materials are via level dielectric. The air is supplied to line level subsequent to removal of sacrificial material by clean thermal decomposition and assisted diffusion of byproducts through porosities in the IC structure. Optionally, air is also included within porosities in the via level dielectric. By incorporating air to the extent produced in the invention, intralevel and interlevel dielectric values are minimized.
摘要:
A hybrid interconnect structure that possesses a higher interconnect capacitance in one set of regions than in other regions on the same microelectronic chip is described. Several methods to fabricate such a structure are provided. Circuit implementations of such hybrid interconnect structures are described that enable increased static noise margin and reduce the leakage in SRAM cells and common power supply voltages for SRAM and logic in such a chip. Methods that enable combining these circuit benefits with higher interconnect performance speed and superior mechanical robustness in such chips are also taught.
摘要:
A method for fabricating a low k, ultra-low k, and extreme-low k multilayer interconnect structure on a substrate in which the interconnect line features are separated laterally by a dielectric with vertically oriented nano-scale voids formed by perforating it using sub-optical lithography patterning and etching techniques and closing off the tops of the perforations by a dielectric deposition step. The lines are supported either by solid or patterned dielectric features underneath. The method avoids the issues associated with the formation of air gaps after the fabrication of conductor patterns and those associated with the integration of conventional low k, ultra-low k and extreme low k dielectrics which have porosity present before the formation of the interconnect patterns.
摘要:
A method for fabricating low k and ultra-low k multilayer interconnect structures on a substrate includes: a set of interconnects separated laterally by air gaps; forming a support layer in the via level of a dual damascene structure that is only under the metal line; removing a sacrificial dielectric through a perforated bridge layer that connects the top surfaces of the interconnects laterally; performing multilevel extraction of a sacrificial layer; sealing the bridge in a controlled manner; and decreasing the effective dielectric constant of a membrane by perforating it using sub-optical lithography patterning techniques.
摘要:
A method for forming an interconnect structure with nanocolumnar intermetal dielectric is described involving the construction of an interconnect structure using a solid dielectric, and introducing a regular array of vertically aligned nanoscale pores through stencil formation and etching to form a hole array and subsequently pinching off the tops of the hole array with a cap dielectric. Variations of the method and means to construct a multilevel nanocolumnar interconnect structure are also described.
摘要:
A novel air-gap-containing interconnect wiring structure is described incorporating a solid low-k dielectric in the via levels, and a composite solid plus air-gap dielectric in the wiring levels. Also provided is a method for forming such an interconnect structure. The method is readily scalable to interconnect structures containing multiple wiring levels, and is compatible with Dual Damascene Back End of the Line (BEOL) processing.