Abstract:
UV-curable interlayer compositions are provided. An interlayer composition may contain a polyallyl isocyanurate compound, an ester of β-mercaptopropionic acid, a monofunctional (meth)acrylate monomer having one or more cyclic groups, and a photoinitiator. Processes of using the interlayer compositions to form multilayer structures and the multilayer structures are also provided.
Abstract:
A process for preparing a device and a device including a substrate; an interlayer disposed on the substrate, wherein the interlayer comprises a cured film formed from an interlayer composition, wherein the interlayer composition comprises: an epoxy compound; a polyvinyl phenol; a melamine resin; a solvent; an optional surfactant; and an optional catalyst; a source electrode and a drain electrode disposed on a surface of the interlayer; a semiconductor layer disposed on the interlayer, wherein the semiconductor layer is disposed into a gap between the source and drain electrode; a back channel interface comprising an interface between the semiconductor layer and the interlayer, wherein the interlayer serves as a back channel dielectric layer for the device; a dielectric layer disposed on the semiconductor layer; a gate electrode disposed on the dielectric layer. Also an interlayer composition and an organic thin film transistor comprising the interlayer composition.
Abstract:
The present disclosure is directed to a composition including a polyvinyl butyral represented by the following formula: wherein A, B and C represent a proportion of corresponding repeat units expressed as a weight percent, wherein each repeat unit is randomly distributed along a polymer chain and wherein the sum of A, B and C is about 100 weight percent; a poly(melamine-co-formaldehyde) based polymer and an anhydride. Devices coated with the composition and cured films formed from the composition comprising conductive features are also provided.
Abstract:
A coating composition for an image transfer member in an aqueous ink imaging system. The coating composition includes at least one hydrophilic polymer, at least one hygroscopic material, at least one oil-in-water emulsion and at least one surfactant.
Abstract:
Disclosed herein are sacrificial coating compositions comprising at least one hydrophilic polymer; at least one hygroscopic agent; at least one surfactant; at least one non-reactive silicone release agent; and water. In certain embodiments, the at least one non-reactive silicone release agent is chosen from polyether modified polysiloxane and nonreactive silicone glycol copolymers. In certain embodiments, the at least one non-reactive silicone release agent may be present in an amount ranging from about 0.001% to about 2%, based on the total weight of the composition, such as from about 0.03% to about 0.06%. Also disclosed herein is a blanket material suitable for transfix printing comprising a sacrificial coating composition, as well as an indirect printing process comprising a step of applying a sacrificial coating composition to a blanket material.
Abstract:
Disclosed herein are sacrificial coating compositions comprising at least one hydrophilic polymer; at least one hygroscopic agent; at least one surfactant; at least one non-reactive silicone release agent; and water. In certain embodiments, the at least one non-reactive silicone release agent is chosen from polyether modified polysiloxane and nonreactive silicone glycol copolymers. In certain embodiments, the at least one non-reactive silicone release agent may be present in an amount ranging from about 0.001% to about 2%, based on the total weight of the composition, such as from about 0.03% to about 0.06%. Also disclosed herein is a blanket material suitable for transfix printing comprising a sacrificial coating composition, as well as an indirect printing process comprising a step of applying a sacrificial coating composition to a blanket material.
Abstract:
An aqueous sacrificial coating composition for an image transfer member in an aqueous ink imaging system is provided. The sacrificial coating composition may include at least one polymer, at least one selected from (i) at least one chain extender, or (ii) a reactive elastomeric latex, wherein the at least one chain extender comprises a species capable of linking linear chains or chain segments of the reactive elastomeric latex, at least one hygroscopic plasticizer, and at least one surfactant.
Abstract:
An ink composition, including an ink base and a wax emulsion. A viscosity of the ink composition is between 80 Pa·s and 400 Pa·s at 100 rad/s and 25° C., and a tack of the ink composition is between 32 g-m and 45 g-m at 60 seconds. The total wax content of the ink composition is between 1% and 5% by weight, based on a total weight of the ink composition, and the total water content of the ink composition is between 1% and 15% by weight, based on the total weight of the ink composition.
Abstract:
An embodiment of the present disclosure is directed to a sacrificial coating composition for an image transfer member in an aqueous ink imaging system. The coating composition is made from ingredients comprising: a latex comprising polymer particles dispersed in a continuous liquid phase; at least one hygroscopic material; at least one oil-in-water emulsion; and at least one surfactant.
Abstract:
Described herein is a method and apparatus for ink jet printing. The method includes providing a wetting enhancement coating on a transfer member. The wetting enhancement coating (WEC) includes water, an acid treated, waxy maize cationic starch, a humectant and a surfactant. The wetting enhancement coating is dried or semi-dried to form a film. Ink droplets are ejected onto the film to form an ink image on the film. The ink image is dried and the ink image and film are transferred to a recording medium.