摘要:
According to one embodiment, a magneto-resistance effect element includes: a first electrode; a second electrode; a first magnetic layer provided between the first and the second electrodes; a second magnetic layer provided between the first magnetic layer and the second electrode; and an oxide layer of a metal oxide provided between the first magnetic layer and the second magnetic layer. The oxide layer includes wustite crystal grains of a wustite structure with a (1 1 1) plane orientation containing iron. A lattice spacing of a (1 1 1) plane of the wustite crystal grains is not less than 0.253 nanometers and not more than 0.275 nanometers.
摘要:
A magnetoresistive element includes a magnetoresistive film including a magnetization pinned layer, a magnetization free layer, an intermediate layer arranged between the magnetization pinned layer and the magnetization free layer, a cap layer arranged on the magnetization pinned layer or on the magnetization free layer, and a functional layer arranged in the magnetization pinned layer, in the magnetization free layer, in the interface between the magnetization pinned layer and the intermediate layer, in the interface between the intermediate layer and the magnetization free layer, or in the interface between the magnetization pinned layer or the magnetization free layer and the cap layer, and a pair of electrodes which pass a current perpendicularly to a plane of the magnetoresistive film, in which the functional layer is formed of a layer including nitrogen and a metal material containing 5 atomic % or more of Fe.
摘要:
A method for manufacturing a magneto-resistance effect element is provided. The magneto-resistance effect element includes a first magnetic layer including a ferromagnetic material, a second magnetic layer including a ferromagnetic material and a spacer layer provided between the first magnetic layer and the second magnetic layer, the spacer layer having an insulating layer and a conductive portion penetrating through the insulating layer. The method includes: forming a film to be a base material of the spacer layer; performing a first treatment using a gas including at least one of oxygen molecules, oxygen atoms, oxygen ions, oxygen plasma and oxygen radicals on the film; and performing a second treatment using a gas including at least one of nitrogen ions, nitrogen atoms, nitrogen plasma, and nitrogen radicals on the film submitted to the first treatment.
摘要:
An example magnetoresistive element includes a first magnetic layer whose magnetization direction is substantially pinned toward one direction; a second magnetic layer whose magnetization direction is changed in response to an external magnetic field; and a spacer layer provided between the first magnetic layer and the second magnetic layer. At least one of the first magnetic layer and the second magnetic layer has a magnetic compound that is expressed by M1aM2bXc(where 5≦a≦68, 10≦b≦73, and 22≦c≦85). M1 is at least one element selected from the group consisting of Co, Fe, and Ni. M2 is at least one element selected from the group consisting of Ti, V, Cr, and Mn. X is at least one element selected from the group consisting of N, O, and C.
摘要:
A blood-pressure sensor includes a substrate, a first electrode, a magnetization fixed layer, a nonmagnetic layer, a magnetization free layer, and a second electrode. The substrate is bent to generate a tensile stress at least in a first direction. The first electrode is provided on the substrate. The magnetization fixed layer has magnetization to be fixed in a second direction, and is provided on the substrate. The nonmagnetic layer is provided on the magnetization fixed layer. The magnetization free layer has a magnetization direction which is different from the first direction and from a direction perpendicular to the first direction. The second electrode is provided on the magnetization free layer.
摘要:
A magnetoresistive element includes a magnetoresistive film including a magnetization pinned layer, a magnetization free layer, an intermediate layer arranged between the magnetization pinned layer and the magnetization free layer, a cap layer arranged on the magnetization pinned layer or on the magnetization free layer, and a functional layer formed of an oxygen- or nitrogen-containing material and arranged in the magnetization pinned layer, or in the magnetization free layer, and a pair of electrodes which pass a current perpendicularly to a plane of the magnetoresistive film, in which a crystalline orientation plane of the functional layer is different from a crystalline orientation plane of its upper or lower adjacent layer.
摘要:
A magnetoresistive element includes at least three metallic magnetic layers, at least two connection layers provided between the at least three metallic magnetic layers, each having an insulating layer and current confined paths including a metallic magnetic material penetrating the insulating layer, and electrodes which supply a current perpendicularly to a plane of a stacked film of the metallic magnetic layers and the connection layers.
摘要:
The present invention relates to a method for manufacturing a magnetoresistive element having a magnetization pinned layer, a magnetization free layer, and a spacer layer including an insulating layer provided between the magnetization pinned layer and the magnetization free layer and current paths penetrating into the insulating layer. A process of forming the spacer layer in the method includes depositing a first metal layer forming the metal paths, depositing a second metal layer on the first metal layer, performing a pretreatment of irradiating the second metal layer with an ion beam or a RF plasma of a rare gas, and converting the second metal layer into the insulating layer by means of supplying an oxidation gas or a nitriding gas.
摘要:
A magnetoresistance effect element comprises a magnetoresistance effect film and a pair of electrode. The magnetoresistance effect film having a first magnetic layer whose direction of magnetization is substantially pinned in one direction; a second magnetic layer whose direction of magnetization changes in response to an external magnetic field; a nonmagnetic intermediate layer located between the first and second magnetic layers; and a film provided in the first magnetic layer, in the second magnetic layer, at a interface between the first magnetic layer and the nonmagnetic intermediate layer, and/or at a interface between the second magnetic layer and the nonmagnetic intermediate layer, the film having a thickness not larger than 3 nanometers, and the film has as least one selected from the group consisting of oxide, nitride, oxinitride, phosphide, and fluoride. The pair of electrodes are electrically connected to the magnetoresistance effect film to supply a sense current perpendicularly to a film plane of said magnetoresistance effect film.
摘要:
A magnetoresistance effect element comprises a magnetoresistance effect film and a pair of electrode. The magnetoresistance effect film having a first magnetic layer whose direction of magnetization is substantially pinned in one direction; a second magnetic layer whose direction of magnetization changes in response to an external magnetic field; a nonmagnetic intermediate layer located between the first and second magnetic layers; and a film provided in the first magnetic layer, in the second magnetic layer, at a interface between the first magnetic layer and the nonmagnetic intermediate layer, and/or at a interface between the second magnetic layer and the nonmagnetic intermediate layer, the film having a thickness not larger than 3 nanometers, and the film has as least one selected from the group consisting of nitride, oxinitride, phosphide, and fluoride. The pair of electrodes are electrically connected to the magnetoresistance effect film to supply a sense current perpendicularly to a film plane of said magnetoresistance effect film.