摘要:
A magneto-resistance effect element, a magneto-resistance effect head, a magnetic storage and a magnetic memory, in which noise caused by a spin-transfer torque is reduced, are provided. In a fixed magnetization layer or a free magnetization layer of a magneto-resistance effect element including the fixed magnetization layer, a spacer layer and the free magnetization layer; a layer containing one element selected from the group consisting of Ti, Zr, Nb, Mo, Ru, Rh, Pd, Ag, La, Hf, Ta, W, Re, Os, Ir, Pt and Au is disposed.
摘要:
A high-frequency oscillator includes a high-frequency oscillation element having a magnetization pinned layer whose magnetization direction is pinned substantially in one direction, an oscillation layer formed of a magnetic material which generates a high-frequency oscillation phenomenon when a current is supplied, an intermediate layer provided between the magnetization pinned layer and the oscillation layer, the intermediate layer having an insulation layer and current paths which pass through the insulation layer in a thickness direction, and a pair of electrodes which supply a current perpendicularly to a plane of a stacked film including the magnetization pinned layer, the intermediate layer and the oscillation layer.
摘要:
A magnetoresistive element includes at least three metallic magnetic layers, connection layers each provided between the metallic magnetic layers, and electrodes which supply a current perpendicularly to a plane of a stack of the metallic magnetic layers and the connection layers. A magnetization direction of a lowermost or uppermost metallic magnetic layer of the metallic magnetic layers is pinned, and a magnetization direction of an intermediate metallic magnetic layer is twisted such that magnetization directions of the lowermost and the uppermost metallic magnetic layers are made substantially orthogonal to each other at zero external field.
摘要:
A magnetoresistive element has a magnetization pinned layer a magnetization direction of which is substantially pinned in one direction, a magnetization free layer a magnetization direction of which varies depending on an external field, and a spacer layer including an insulating layer provided between the magnetization pinned layer and the magnetization free layer and current paths penetrating the insulating layer, the magnetization pinned layer or magnetization free layer located under the spacer layer comprising crystal grains separated by grain boundaries extending across a thickness thereof, in which, supposing that an in-plane position of one end of each of the crystal grains is set to 0 and an in-plane position of a grain boundary adjacent to the other end of the crystal grain is set to 100, the current path corresponding the crystal grain is formed on a region in a range between 20 and 80 of the in-plane position.
摘要:
A magnetoresistive element has a first magnetic layer and a second magnetic layer separate from each other, the first magnetic layer and the second magnetic layer each having a magnetization whose direction is substantially pinned, and a non-magnetic conductive layer formed in contact with the first magnetic layer and the second magnetic layer and electrically connecting the first and second magnetic layers, the non-magnetic conductive layer forming a path of spin-polarized electrons from one of the magnetic layer to the other magnetic layer, the non-magnetic conductive layer comprising a portion located between the first magnetic layer and the second magnetic layer, the portion being a sensing area.
摘要:
A magnetoresistive element has a magnetization pinned layer, a nonmagnetic spacer layer including a stack of a nonmagnetic metal layer, a resistance increasing layer and another nonmagnetic metal layer, a magnetization free layer having an fcc crystal structure, a cap layer having an fcc, an hcp, or a bcc crystal structure and having an interatomic distance between nearest neighbors greater than that of the magnetization free layer, and a pair of electrodes configured to provide a sense current in a direction substantially perpendicular to planes of the magnetization pinned layer, the nonmagnetic spacer layer, and the magnetization free layer.
摘要:
A magnetoresistance effect film including a magnetically pinned layer, a non-magnetic intermediate layer and a magnetically free layer has sidewall layers covering at least side surfaces of the magnetically pinned layer and the non-magnetic intermediate layer. The sidewall layers are made of a high-resistance oxide, nitride, fluoride, boride, sulfide or carbide having a specular reflection effect against conduction electrons, thereby to prevent non-elastic scattering of electrons and missing of spin information on side surfaces of the magnetoresistance effect film.
摘要:
A magnetoresistive effect element is produced by forming a first magnetic layer, a spacer layer including an insulating layer and a conductive layer which penetrates through the insulating layer and passes a current, on the first magnetic layer, and a second magnetic layer all of which or part of which is treated with ion, plasma or heat, on the formed spacer layer.
摘要:
A method is for manufacturing a magnetoresistance effect element having a magnetization fixed layer, a non-magnetic intermediate layer, and a magnetization free layer being sequentially stacked. The method includes: forming at least a part of a magnetic layer that is to become either one of the magnetization fixed layer and the magnetization free layer; forming a function layer including at least one of an oxide, a nitride, and a fluoride on the part of the magnetic layer; and removing a part of the function layer by exposing the function layer to either one of an ion beam and plasma irradiation.
摘要:
A magneto-resistance effect element, a magneto-resistance effect head, a magnetic storage and a magnetic memory, in which noise caused by a spin-transfer torque is reduced, are provided. In a fixed magnetization layer or a free magnetization layer of a magneto-resistance effect element including the fixed magnetization layer, a spacer layer and the free magnetization layer; a layer containing one element selected from the group consisting of Ti, Zr, Nb, Mo, Ru, Rh, Pd, Ag, La, Hf, Ta, W, Re, Os, Ir, Pt and Au is disposed.