Abstract:
The present disclosure provides electrodes that possess components capable of indicating to an end-user when the electrode is in need of replacement. The electrode includes a substrate and a conductive composition on at least a portion of a surface of the substrate. In embodiments, the conductive composition includes at least one hydrogel and at least one component that precipitates from the hydrogel after repeated use of the electrode, thereby providing an indication to replace the electrode. In other embodiments, the electrodes include a hydrogel in combination with a pH indicator which changes its color or opacity upon repeated use of the electrode, thereby indicating an appropriate time for changing or replacing the electrode.
Abstract:
Example techniques and systems include managing delivery of a substance into an inhaled stream of air from a patient. For example, a system may include a housing configured to accept a medication canister containing a medication, the housing comprising a dispensing portion, a sensor configured to sense air flow within the dispensing portion, and a processor configured to transmit a signal indicative of the sensed air flow, wherein information associated with use of the pulmonary medication dosing device is generated by the computing device and based on the transmitted signal.
Abstract:
An exercise device having a rigid base includes at least one frame fixed with and extending upwardly therefrom. An outer barrel is rotationally fixed with the upper end of each frame at a tilt mechanism. Both an outer barrel and an inner barrel are open from a top side to a bottom side thereof for accommodating the person therein. At least one inflatable cushion is fixed with an inner side of the inner barrel. An adjustable leg support mechanism projects downwardly from the inner barrel and is adapted to support the person's feet and legs. An electric control console controls motorized tilt and spin mechanisms to tilt the outer barrel with respect to vertical and spin the inner barrel with respect to the outer barrel. Preferably the control console further includes at least a processor, a computer-readable storage medium, a display, an input interface, and a network interface.
Abstract:
A sensor inserting device includes a device main body and a push handle for moving a detector of a sensor and an insertion needle, with the sensor held coupled to the insertion needle, into the body of a patient. A transmitter, for processing a signal from the sensor, is set in the device main body. A cable, allowing transmission of a signal between the sensor and the transmitter, is connected to the sensor (12) and the transmitter.
Abstract:
A system to monitor and transmit a plurality of signals based on a characteristic of a user is disclosed. The system comprises a sensor to produce the plurality of signals on a continuous basis, the signals being indicative of a glucose characteristic measured in the user when a portion of the sensor is placed in subcutaneous tissue. The system further includes a recorder including a recorder port to physically couple and interface with a sensor port of the sensor and a dock remotely located from the sensor and the recorder. The dock includes a dock receiver to physically couple and interface with the recorder port. The recorder can record the signals produced from the sensor when the recorder is coupled to the sensor and the recorder can transmit the stored signals to the dock when the recorder is removed from the sensor and coupled to the dock.
Abstract:
A sensor inserting device includes a device main body and a push handle for moving a detector of a sensor and an insertion needle, with the sensor held coupled to the insertion needle, into the body of a patient. A transmitter, for processing a signal from the sensor, is set in the device main body. A cable, allowing transmission of a signal between the sensor and the transmitter, is connected to the sensor (12) and the transmitter.
Abstract:
Systems and methods for processing sensor data and end of life detection are provided. In some embodiments, a method for determining the end of life of a continuous analyte sensor includes evaluating a plurality of risk factors using an end of life function to determine an end of life status of the sensor and providing an output related to the end of life status of the sensor. The plurality of risk factors may be selected from the list including the number of days the sensor has been in use, whether there has been a decrease in signal sensitivity, whether there is a predetermined noise pattern, whether there is a predetermined oxygen concentration pattern, and error between reference BG values and EGV sensor values.
Abstract:
A pulse oximetry system for reducing the risk of electric shock to a medical patient can include physiological sensors, at least one of which has a light emitter that can impinge light on body tissue of a living patient and a detector responsive to the light after attenuation by the body tissue. The detector can generate a signal indicative of a physiological characteristic of the living patient. The pulse oximetry system may also include a splitter cable that can connect the physiological sensors to a physiological monitor. The splitter cable may have a plurality of cable sections each including one or more electrical conductors that can interface with one of the physiological sensors. One or more decoupling circuits may be disposed in the splitter cable, which can be in communication with selected ones of the electrical conductors. The one or more decoupling circuits can electrically decouple the physiological sensors.
Abstract:
The present invention relates to methods for remotely tuning treatment parameters in movement disorder therapy systems where the subject and clinician are located remotely from each other. The present invention still further provides methods of quantifying movement disorders for the treatment of patients who exhibit symptoms of such movement disorders including, but not limited to, Parkinson's disease and Parkinsonism, Dystonia, Chorea, and Huntington's disease, Ataxia, Tremor and Essential Tremor, Tourette syndrome, stroke, and the like. The present invention yet further relates to methods of remotely tuning a therapy device using objective quantified movement disorder symptom data to determine the therapy setting or parameters to be transmitted and provided to the subject via his or her therapy device. The present invention also provides treatment and tuning remotely, allowing for home monitoring of subjects.
Abstract:
A biosignal detecting apparatus and method thereof are disclosed, including a ring-type main body, and a pair of electrodes configured to be in contact with a finger of a user and to detect a biosignal of the user. An electrode of the pair of electrodes is disposed along an inner surface of the main body.