Abstract:
A bio-inspired method for detoxifying contaminated water is disclosed. In the method, polydopamine, a mussel-inspired adhesive catecholamine was used as an adsorbent to effectively remove from contaminated water three major classes of toxic agents: heavy metal ions (e.g., Cr, Hg, Pb, Cu, and Cd), toxic organic species (e.g., 4-aminopyridine), and radioisotopes (e.g., Lutetium-177). Furthermore, the polydopamine adsorbent was regenerated by treatment with acid or hydrogen peroxide.
Abstract:
The invention provides for a method of regenerating a solid adsorbent, such as a molecular sieve or activated carbon, using stable fluorinated hydrocarbon compounds such as, for example, HFC-245cb (1,1,1,2,2-pentafluoropropane, as a regeneration fluid.
Abstract:
Disclosed are magnetic nanoparticles and methods of using magnetic nanoparticles for selectively removing biologics, small molecules, analytes, ions, or other molecules of interest from liquids.
Abstract:
Disclosed herein are methods for treating amyloid disease in humans by clearing amyloid peptides from one or more bodily fluids such as, e.g., blood, of a patient. In particular, the methods are based on the administration of compounds capable of binding to amyloid-beta (Aβ) or on dialysis of blood or plasma exchange in order to remove Aβ peptides from the blood circulation, and/or brain or other affected organs.
Abstract:
Provided is a method for cleaning a used denitration catalyst, which prevents release of mercury to the atmosphere by collecting and removing mercury which would have been released to the atmosphere in the process of cleaning the used denitration catalyst. The method comprises immersing the used denitration catalyst mainly composed of titanium oxide and having been used in exhaust gas containing mercury in a cleaning liquid, and stirring the cleaning liquid to dissolve and remove catalyst poisons including the mercury from the used denitration catalyst, wherein a waste gas generated in the step of stirring the cleaning liquid is conducted to a flue having a mercury removal device so as to remove the mercury, and then vented to the atmosphere.
Abstract:
Using seawater as a benchmark of water with high TDS (total dissolved solids) Raw seawater can be instantly and significantly desalted just by passing a flow through adsorber (FTA) without applying electricity to the adsorbent therein. Various precursors may be converted to dual-functional adsorbents for the FTA. A cation-adsorbing group and an anion-adsorbing group are grafted onto the surface of the adsorbents by phosphorylation and amination, respectively. Based on the applications, the adsorbent may be configured as membrane form or packed bed in the FTA. When the adsorbent becomes saturated, it can be regenerated online using liquids cleaner than the intake. Besides seawater, the FTA may be utilized for treating other TDS-infested wastewaters at very minimal cost.
Abstract:
Processes described include reacting a fresh or spent catalyst, or sorbent, with a solution containing an extracting agent (such as an acid or a base). Preferably, the catalyst contains both alumina and a molecular sieve (or a sorbent), and the reaction is performed under relatively mild conditions such that the majority of the base material does not dissolve into the solution. Thus, the catalyst can be re-used, and in certain instances the catalyst performance even improves, with or without re-incorporating certain of the metals back into the catalyst. Additionally, metals contained in the catalyst, such as Na, Mg, Al, P, S, Cl, K, Ca, V, Fe, Ni, Cu, Zn, Sr, Zn Sb, Ba, La, Ce, Pr, Nd, Pb, or their equivalent oxides, can be removed from the catalyst. Some of the metals that are removed are relatively valuable (such as the rare earth elements of La, Ce, Pr and Nd).
Abstract:
A bio-inspired method for detoxifying contaminated water is disclosed. In the method, polydopamine, a mussel-inspired adhesive catecholamine was used as an adsorbent to effectively remove from contaminated water three major classes of toxic agents: heavy metal ions (e.g., Cr, Hg, Pb, Cu, and Cd), toxic organic species (e.g., 4-aminopyridine), and radioisotopes (e.g., Lutetium-177). Furthermore, the polydopamine adsorbent was regenerated by treatment with acid or hydrogen peroxide.
Abstract:
Processes described include reacting a fresh or spent catalyst, or sorbent, with a solution containing an extracting agent (such as an acid or a base). Preferably, the catalyst contains both alumina and a molecular sieve (or a sorbent), and the reaction is performed under relatively mild conditions such that the majority of the base material does not dissolve into the solution. Thus, the catalyst can be re-used, and in certain instances the catalyst performance even improves, with or without re-incorporating certain of the metals back into the catalyst. Additionally, metals contained in the catalyst, such as Na, Mg, Al, P, S, Cl, K, Ca, V, Fe, Ni, Cu, Zn, Sr, Zn Sb, Ba, La, Ce, Pr, Nd, Pb, or their equivalent oxides, can be removed from the catalyst. Some of the metals that are removed are relatively valuable (such as the rare earth elements of La, Ce, Pr and Nd).
Abstract:
A system for effecting the pretreatment therewith of a sorbent comprising a conveying line (105), such as a pipe, and a plurality of solution nozzles operative for purposes of introducing a solution to treat the sorbent. More particularly, the conveying line (105) includes an inlet (107), an outlet (109), and an inner surface (105a) that is operative to define a passageway (190) through which sorbent particles are capable of being transported between the inlet (107) of the conveying line (105) and the outlet (109) of the conveying line (105). Each of the plurality of solution nozzles includes a respective one of a plurality of orifices (120) that are designed to be disposed circumferentially about the inner surface (105a) of the conveying line (105) and that are designed to be operative to effect therewith the injection of an aqueous solution of a liquid sorbent conditioner into the passageway (190) in order to thereby effect therewith the pretreatment of sorbent particles that are being transported through the passageway (190) in the conveying line (105).