Abstract:
A culture media, media supplement, or soluble matrix for cryopreservation or enhanced regenerative cell growth in culture and maintenance of multi-lineage differentiation potentiation. The inventive culture media, media supplement, or soluble matrix comprises a GAG composition comprising a sulfated GAG, such as chondroitin sulfate. A soluble matrix, a cell administration package or kit comprising the soluble matrix and a device for cell administration, and a method of use thereof, for administration of regenerative cells for treating a joint disease or other weakened or damaged tissue comprising the specified GAG compositions are further provided.
Abstract:
A highly safe procedure for the preparation of purified stem cell fractions of lipid origin is herein described, in which the use of a specially designed single collecting device, reduces the number of passages and manipulations undergone by stem cell-containing material, reducing to a minimum the risks of contamination, material loss, and inadvertent exchange of samples, and further simplifying the interface and cooperation between personnel recovering the raw material and those expert in stem cell isolation.
Abstract:
A method of ex-vivo increasing insulin content in beta cells or stem cells is disclosed. The method comprising contacting the beta cells or stem cells with an agent for downregulating an activity or expression of miR-7, thereby increasing the insulin content in the beta cells or stem cells.
Abstract:
Compositions for use in treatment of a variety of tissue diseases include stem cells and stem cell released molecules (SRM's) suspended in an aqueous solution with a cellulosic material or other thickening agent. The stem cells and SRM's can be derived from one or more distinct cell lines. The SRM's can further include one or more mucins, cytokines, or growth factors. Exemplary formulations include stem cells and SRMs derived from epithelial stem cells, corneal limbal stem cells, and fibroblasts. Other compositions and methods for formulation thereof are described.
Abstract:
A method for enhancing the therapeutic effect of stem cells on autoimmune diseases, cardiovascular diseases, and/or hematological diseases is provided. The method comprises pre-treating the stem cells with ligustilide to increase the expression of differentiation-promoting genes in the stem cells, increase the expression of homing-promoting genes in the stem cells, and/or decrease the expression of inflammatory genes in the stem cells, wherein the treatment is conducted in a culture medium of the stem cell.
Abstract:
Regenerative cells present in adipose tissue are used to treat patients, including patients with musculoskeletal diseases or disorders. Methods of treating patients include processing adipose tissue to deliver a concentrated amount of regenerative cells obtained from the adipose tissue to a patient. The methods may be practiced in a closed system so that the stem cells are not exposed to an external environment prior to being administered to a patient. Accordingly, in a preferred method, regenerative cells present in adipose tissue are placed directly into a recipient along with such additives necessary to promote, engender or support a therapeutic musculoskeletal benefit.
Abstract:
Cells present in adipose tissue are used to promote wound healing in a patient. Methods of treating patients include processing adipose tissue to deliver a concentrated amount of regenerative cells obtained from the adipose tissue to a patient. The methods may be practiced in a closed system so that the regenerative cells are not exposed to an external environment prior to being administered to a patient. Accordingly, in a preferred method, cells present in adipose tissue are placed directly into a recipient along with such additives necessary to promote, engender or support a therapeutic benefit.
Abstract:
The present invention relates to a mesenchymal stem cell having immunomodulatory activity and a preparation method therefor and, more specifically, to: a rapamycin-treated mesenchymal stem cell having immunomodulatory activity, which expresses any one or more cell surface factors selected from the group consisting of CCR1, CCR2, CCR3, CCR4, CCR7, CCR9 and CXCR4; a cell therapy composition comprising the mesenchymal stem cell, for preventing or treating immune disorders; and a preparation method for the mesenchymal stem cell having immunomodulatory activity. The rapamycin-treated mesenchymal stem cell having immunomodulatory activity, according to the present invention, has increased expression of IDO, TGF-β and IL-10 which are factors having immunomodulatory activity, has decreased expression of Phospho-mTOR, Rictor and Ractor which are signal transduction factors of mTOR, and has increased expression, in the cell, of autophagic inducer Beclin1, ATG5, ATG7, LC3I or LCII. If this cell is used as a cell therapy in individuals having immune disorders, it is possible to effectively treat immune disorders.
Abstract:
The present invention provides novel stem cell compositions having significant therapeutic and practical advantages, as well as methods of preparing and using such compositions for the treatment and prevention of injury and disease in patients. The invention may be applied to stem cell populations isolated from a wide variety of animals, including humans, and tissues. In particular applications, the invention is used to prepare a stem cell composition from a collagen-based tissue, such as adipose tissue, isolated from a patient, and the stem cell composition is subsequently provided to a site of actual or potential injury in the patient. The invention further includes related kits comprising the stem cell compositions, which are remarkably stable and retain viability and efficacy during storage and shipment.
Abstract:
The invention is directed to a therapeutic composition that includes a first cell preparation that includes isolated stromal cells of a first type and a second cell preparation that includes isolated stromal cells of a second type. The first and second cell preparations may include cultured cells. The stromal cells may include adipose stromal cells and bone marrow derived stromal cells. The therapeutic composition may include a blood component that includes one or more of platelet-poor plasma, concentrated platelet-poor plasma, platelet-rich plasma, and whole blood.