Abstract:
A tether may include a core, a plurality of electrical conductors wound around the core, and a jacket surrounding the plurality of electrical conductors. The plurality of electrical conductors may include at least two groups of electrical conductors. Each group of electrical conductors of the at least two groups of electrical conductors may define a respective electrical path, where the respective electrical path is different from the electrical paths defined by other groups of electrical conductors of the at least two groups of the electrical conductors. Moreover, each group of electrical conductors of the at least two groups of electrical conductors is located around a respective portion of the core, such that a cross-section of each group of electrical conductors of the at least two or more electrical conductors defines a respective arc around the respective portion of the core.
Abstract:
A strand (3) comprising a group of twisted threads (8) and arranged so as to have, over a first part (1) of its length: a sheath (4) containing the group of twisted threads, and a flexible filling product (7) filling a peripheral interstice (6) located between the inner face of the sheath and the periphery of the group of twisted threads, and, over a second part (2) of its length, which is separate from the first part: a material (9) covering the periphery of the group of twisted threads, said material adhering to the twisted threads of the group.
Abstract:
A rope (210, 310) having a three-layered structure comprising a core layer, an inner layer and an outer layer, the core layer comprising one strand (225, 315), the inner layer comprising multiple strands (220) with an amount n and the outer layer comprising multiple strands (215) with an amount m, wherein n is an uneven number, and m is a number which has no common divisor with n, each strand is formed by multiple twisted metal filaments. By this structure fretting of the strands is reduced and the life time of the rope is improved. Also, the use of the rope in lifting application and an elevator system comprising such a rope are disclosed.
Abstract:
Methods are provided for forming a spliced eye (220) of a sling (222) made from a rope that includes a core rope (37) and includes a braided sheath (398).
Abstract:
A method for producing a strand or cable, in which fibers and/or wires are twisted at a twisting point to form the strand or cable. The fibers and/or wires are coated with a liquefied matrix material before and/or at the twisting point and are embedded in the matrix material during twisting. The fibers and/or wires are immersed in the matrix material before and/or at the twisting point and the formed strand or the formed cable is cooled after the twisting in order for the matrix material to solidify, preferably by air or in a cooling liquid, for example water.
Abstract:
A rope structure comprising a plurality of rope subcomponents, a plurality of bundles combined to form the rope subcomponents, a plurality of first yarns and a plurality of second yarns combined to form the bundles. In one embodiment, the first yarns have a tenacity of approximately 25-45 gpd and the second yarns have a tenacity of approximately 6-22 gpd. In another embodiment, the first yarns have a breaking elongation of approximately 2%-5% and the second yarns have a breaking elongation of approximately 2%-12%.
Abstract:
A sling for industrial lifting comprising a cover having fibers twisted in a first direction; and a load-bearing core within the cover, the core having a helical twist of a plurality of core strands, each core strand twisted in a second direction.
Abstract:
A rope with a core and a casing surrounding the core. The core is composed of a multitude of synthetic fibers and the casing is composed of a multitude of synthetic fibers that are interlaced with one another. The synthetic fibers that form the casing are composed of polytetrafluoroethylene and form a lightproof and fluid-repellent envelope for the core.
Abstract:
A steel cord according to the invention comprises a metal core strand (11) and adjacent layer of steel elements (13). Between metal core strand (11) and adjacent layer of steel elements (13), a polymer layer (16) with a minimum thickness of more than 0.02 mm is provided. These steel cords are to be used to reinforce off-the-road tires or conveyor belts.