Abstract:
A PCB assembly (1) in this case a DC-DC converter comprising a single layer board (2), mounts power semi-conductor devices forming high heat generating components (3) and various cores of magnetic material forming heat dissipating components (4). Tracks of heat conductive coupling material (6) lie above or below each heat generating component (3) and project into one of the heat dissipating components (4) and beside the others. In one embodiment, the heat generating components (3) are housed within a heat dissipating component (3). In another PCB assembly, there is an additional plug-in PCB which may itself carry heat generating components (3) or only heat dissipating components (4). In the latter case, the heat generating components (3) are mounted on the PCB assembly below the additional plug-in PCB.
Abstract:
A circuit board with a contact sleeve mounted thereon. The contact sleeve is electrically connectable in the manner used for an SMD-component. An upper side of the circuit board has a recess and a metallizing bordering the recess, the metallizing being connected to a conductor path extending on the circuit board, and, set in the recess, a contact sleeve, which is both mechanically secured and electrically connected to the metallizing by means of a solder connection.
Abstract:
A method for providing a mechanical/electrical interconnection between two circuit boards, and the interconnection components required therefore, include a pin and socket each having a tail portion, a shoulder portion and a head portion. The tail portion of the pin is sized so as to fit into a plated through hole of the first board, the head portion is sized so as to allow an automated device to capture the head portion and to rest on top of the plated through hole when inserted therein, and the shoulder portion is sized in relation to the plated through hole so as to rest inside the plated through hole and to allow a predetermined amount of solder to flow under the head portion and down into the plated through hole, but not as far down as the tail portion, thereby assisting in centering the pin in the through hole. Upon heating to a solder reflow temperature, a ring of solder, around the periphery of the head portion of the pin and the shoulder portion of the socket, flows under the head of the pin and the shoulder of the socket, thereby forming a soldered electrical connection between the pin and the first board, and the socket and the second board. By aligning the pin with the socket and inserting the tail portion of the pin into the cavity of the socket, a separable reliable mechanical and electrical interconnection is formed between the first board and the second board.
Abstract:
A circuit board (15) with a contact sleeve (17) mounted thereon. The contact sleeve (17) is electrically connectable in the manner used for an SMD-component. An upper side of the circuit board (15) has a recess (23) and a metallizing (25, 26) bordering the recess (23), the metallizing (25, 26) being connected to a conductor path (27) extending on the circuit board (15), and, set in the recess (23), a contact sleeve (17), which is both mechanically secured and electrically connected to the metallizing (25) by means of a solder connection (29).
Abstract:
An adapter is provided for mounting a ball grid array device on a pin-type integrated circuit socket, and includes a base plate and an interfacing plate. The base plate has a device mounting side formed with a plurality of solder pads thereon. The solder pads correspond to and are adapted for surface mounting of solder balls of the ball grid array device thereon. The base plate is further formed with a plurality of upper through holes, each of which corresponds to one of the solder pads. The interfacing plate is formed with a plurality of lower through holes that correspond respectively with the upper through holes. The interfacing plate further has a socket confronting side with a plurality of insert pins depending therefrom. The insert pins correspond to and are adapted for insertion into pin holes in the integrated circuit socket in order to establish electrical contact with board mounting pins that are disposed in the pin holes. Electrical conductors are provided on the base plate and the interfacing plate for connecting electrically and respectively the solder pads and the insert pins via the upper and lower through holes.
Abstract:
Disclosed is a process to manufacture an interposer which includes an interposer socket assembly to use in probing dense pad arrays that minimizes the associated extraneous pin loading and cross-talk caused by a probe tip. The process comprises the steps of: mounting a number of resistors onto a number of predetermined positions in a pad array on an interposer board; inserting a number of interposer pins of a pin socket into the pads of the pad array on the interposer board, wherein the ends of the interposer pins protrude through the interposer board; placing a solder preform around the ends of the interposer pins; and, heating the solder preforms in a solder re-flow oven to solder the interposer pins to the respective pads of the pad array.
Abstract:
A surface mounted electronic interconnect device. The device includes a coaxial electrical pad comprising a plurality of conductive surfaces on a substrate corresponding to the conductor arrangement of a coaxial connector; and, a coaxial connector comprising a dielectric material having a center opening and isolated electrically conductive interior and exterior surfaces that are planar with the ends of the connector. The dielectric separates the inner conductive surface from the outer conductive surface and is tubularly shaped having an inner wall for the electrically conductive interior surface. The coaxial connector inner and outer conductors may alternatively be comprised of microsprings. The coaxial connector has first and second ends, the first end for attachment to an electronic package and the second end for pluggable attachment to a PC board. A socket for mating with the coaxial connector second end is demonstrated, comprising a body and inner and outer conductors and configured so as to contact the interior and exterior surfaces of the coaxial connector at different times. The inner conductor of the socket is adapted to be received within the electrically conductive interior surface of the coaxial connector.
Abstract:
An electronic interconnect device and methods of making the device. The device comprises a coaxial connector comprising a dielectric material having a center opening and isolated electrically conductive interior and exterior surfaces. The coaxial connector having first and second ends, the first end for attachment to an electronic package and the second end for pluggable attachment to a PC board.
Abstract:
A circuit board assembly system for manufacturing a prototype printed circuit board having a matrix formed in it. A base board having a connection matrix that matches the matrix of the printed circuit board is hinged to a frame having tracks for receiving the printed circuit board, so that the printed circuit board is locatable in a fixed position in relation to the printed circuit board with their respective matrices matching. Component leads may be inserted into the connection matrix through the printed circuit board to form a circuit, which may be tested. The base board may be pivoted away from the printed circuit board to allow the leads to be soldered. The printed circuit board may then be removed from the base board. A cover that is latchable onto the printed circuit board may be used to prevent components from being accidentally removed from the printed circuit board.
Abstract:
A printed circuit board comprises a baseboard having conductor patterns therein and ground layers on both surfaces thereof, and terminal pins mounted on the baseboard. The terminal pins have a root portion which does not project from the baseboard and a contact portion which projects from the baseboard. A circuit assembly comprises a mother printed circuit board, such as the above-mentioned printed circuit board, on which circuit modules are mounted. The circuit module has terminal jacks, which are enclosed within a shielded package and into which the terminal pins of the mother printed circuit board are connected by insertion.