Abstract:
A method for producing carbon nanotubes uses a polymer as a raw material to undergo in situ thermal decomposition. The method includes steps of mixing the polymer and metallic catalyst through a multiple heating stage process of in-situ thermal decomposition to carbonize the polymer and release carbon elements to produce carbon nanotubes. Advantages of the present invention include easy to prepare, low temperature in manipulation, low production cost, and high safety.
Abstract:
Provided are a conductive polymer-carbon nanotube composite including a carbon nanotube and a conductive polymer filled therein, and a method of manufacturing the same. The conductive polymer-carbon nanotube composite where a conductive polymer is filled in a carbon nanotube is manufactured by introducing a monomer of the conductive polymer into the carbon nanotube using a supercritical fluid technique and polymerizing the monomer. The conductive polymer-carbon nanotube composite is a novel nano-structure material which can overcome limitations that conventional materials may have, and thus can be applied to various applications such as sensors, electrode materials, nanoelectronic materials, etc.
Abstract:
This invention provides an aligned single-layer carbon nanotube bulk structure, which comprises an assembly of a plurality of aligned single-layer carbon nanotube and has a height of not less than 10 μm, and an aligned single-layer carbon nanotube bulk structure which comprises an assembly of a plurality of aligned single-layer carbon nanotubes and has been patterned in a predetermined form. This structure is produced by chemical vapor deposition (CVD) of carbon nanotubes in the presence of a metal catalyst in a reaction atmosphere with an oxidizing agent, preferably water, added thereto. An aligned single-layer carbon nanotube bulk structure, which has realized high purify and significantly large scaled length or height, its production process and apparatus, and its applied products are provided.
Abstract:
Electrical devices comprised of nanoscopic wires are described, along with methods of their manufacture and use. The nanoscopic wires can be nanotubes, preferably single-walled carbon nanotubes. They can be arranged in crossbar arrays using chemically patterned surfaces for direction, via chemical vapor deposition. Chemical vapor deposition also can be used to form nanotubes in arrays in the presence of directing electric fields, optionally in combination with self-assembled monolayer patterns. Bistable devices are described.
Abstract:
A thermally and electrically conductive structure comprises a carbon nanotube (110) having an outer surface (111) and a carbon coating (120) covering at least a portion of the outer surface of the carbon nanotube. The carbon coating may be applied to the carbon nanotube by providing a nitrile-containing polymer, coating the carbon nanotube with the nitrile-containing polymer, and pyrolyzing the nitrile-containing polymer in order to form the carbon coating on the carbon nanotube. The carbon nanotube may further be coated with a low contact resistance layer (130) exterior to the carbon coating and a metal layer (140) exterior to the low contact resistance layer.
Abstract:
The separation of single-walled carbon nanotubes (SWNTs), by chirality and/or diameter, using centrifugation of compositions of SWNTs in and surface active components in density gradient media.
Abstract:
A carbon nanohorn (CNH) is oxidized to make an opening in the side of the CNH. A substance to be included, e.g., a metal, is introduced through the opening. The inclusion substance is moved to a tip part of the carbon nanohorn through heat treatment in vacuum or an inert gas. The CNH is further heat treated in an atmosphere containing oxygen in a low concentration to remove the carbon layer in the tip through catalysis of the inclusion substance. This exposes the inclusion substance. If the inclusion substance is a metal which is not moved to a tip part by the heat treatment in vacuum or an inert gas, the carbon part surrounding the fine catalyst particle is specifically burned by a heat treatment in an low oxygen concentration atmosphere, while utilizing the catalysis. Thus, the fine catalyst particle is fixed to the tip part of the CNH.
Abstract:
The present invention relates to a new light emitters that exploit the use of semiconducting single walled carbon nanotubes (SWNTs). Experimental evidences are given on how it is possible, within the standard silicon technology, to devise light emitting diodes (LEDs) emitting in the infrared IR where light emission results from a radiative recombination of electron and holes on semiconducting single walled carbon nanotubes (SWNTs-LED). We will also show how it is possible to implement these SWNTs-LED in order to build up a laser source based on the emission properties of SWNTs. A description of the manufacturing process of such devices is also given.
Abstract:
Devices, compositions, and methods are described which provide a tubular nanostructure or a composite tubular nanostructure targeted to a lipid bilayer membrane. The tubular nanostructure includes a hydrophobic surface region flanked by two hydrophilic surface regions. The tubular nanostructure is configured to interact with a lipid bilayer membrane and form a pore in the lipid bilayer membrane. The tubular nanostructure may be targeted by including at least one ligand configured to bind to one or more cognates on the lipid bilayer membrane of a target cell.
Abstract:
Carbon nanotube reinforced polymers include a polymer and carbon nanotubes reinforcing the polymer. The carbon nanotube reinforced polymer exhibits a conductivity percolation threshold of less than 106 Ω/cm at a carbon nanotube content of 1.5 wt. % and less. The polymer may be selected from a polyamide or a polystyrene based polymer. In certain embodiments, the carbon nanotube content is between 0.1 to 1.5 wt. %, and the reinforced polymer will have a percolation threshold at a carbon nanotube content of less than 0.5 wt. %.