Abstract:
The invention relates to a heating device (1) comprising a metallic substrate (2) whose at least one part is coated with a self-cleaning coating. The inventive coating consists of an external layer (4) contacting ambient air and comprising at least one type of oxidation catalyst selected from platinoid oxides, at least one internal layer (3) which is arranged between the metallic substrate and the external layer and comprises at least one type of oxidation catalyst selected from transition elements oxides of 1b group. The inventive heating device can be embodied, for instance in the form of an iron soleplate consisting of a heating base (6) provided with heating elements (7) or a cooking appliance. Said metallic substrate can be covered with an intermediary enamel layer (5). A method for coating the metallic substrate of a heating device with said coating is also disclosed.
Abstract:
The invention relates to a passivated hydrogenation catalyst that is embedded in a primary amine, a derivative thereof, and/or a nitrile, the process to make such catalysts, as well as the use of such catalysts in a hydrogenation process in which an amine or a derivative thereof is produced.
Abstract:
The present development relates to a process for enrobing active catalytic materials with a protective coating to form pastilles, and to an apparatus for making the pastilles. The process comprises mixing an active catalyst powder with a hydrocarbon material in a low-shear jacketed blender at a temperature slightly above the congealing point of the hydrocarbon, and then making pastilles from the catalyst/hydrocarbon mixture while cooling the mixture to temperature below the congealing point of the hydrocarbon.
Abstract:
The invention relates to a process for producing a catalytic component on a metallic or ceramic support for a fuel cell system, in which the catalytic component is applied to the metallic or ceramic support in at least one layer. This at least one layer contains at least one hydrophobic material component, which is applied together or alternately with at least one catalytically active material component in one process step. The invention also relates to a catalytic component, which is applied to a metallic or ceramic support, for a chemical reactor in a fuel cell system, and to methods of using the catalytic component.
Abstract:
A fuel cell anode for oxidizing fuel, a cathode for reducing oxygen and a solid polymer electrolyte membrane sandwiched between the anode and the cathode, wherein the cathode comprises a catalyst supporter having a catalyst metal and a material having a polymer proton conductivity and a material having water-repellency, the material having water-repellency being electric conductive. The material having water-repellency is a carbonaceous material such as graphite intercalation compound, activated charcoal, carbonaceous material having water-repellent function groups. The disclosure is also related to a membrane electrode assembly comprising an anode catalyst layer, a proton conductive polymer electrolyte membrane and a cathode catalyst layer, the anode catalyst layer, the membrane and the cathode catalyst layer being laminated and united, wherein the catalyst layers contain carbon supporting metal catalyst and a water-repellent material, the water-repellent material being electrically conductive.
Abstract:
Catalysts useful for oxidation reactions are disclosed. The catalysts comprise a titanium zeolite, a transition metal, and a polymer, wherein at least one of the titanium zeolite or transition metal is encapsulated within a thin layer of the polymer. The catalysts are easy to prepare and use, they are easy to recover and reuse, and they provide good conversions in a variety of important oxidation processes, including propylene epoxidation. The invention includes a process which comprises oxidizing an organic compound in the presence of hydrogen, oxygen, and the catalyst, wherein the transition metal catalyzes formation of hydrogen peroxide in situ.
Abstract:
An exhaust gas purifying catalyst for purifying exhaust gas discharged from an internal combustion engine of an automotive vehicle. The exhaust gas purifying catalyst comprises a substrate on which a catalytic coat layer containing a catalyst component is formed. The catalytic coat layer is formed by coating a slurry containing the catalyst component on a surface of the substrate. A crack-preventing coat layer is formed on an upper-most surface of the catalytic coat layer. The crack-preventing coat layer has a thickness of not larger than 50 μm.
Abstract:
A method includes the steps of (1) wrapping a shock absorbent member around a columnar member, (2) supporting one end portion of a cylindrical housing on a support member, (3) arranging the columnar member in a cylindrical guide member formed with the tapered portion inside thereof, (4) inserting the shock absorbent member and the columnar member into the cylindrical housing through the tapered portion, (5) pressing a pushing member to the columnar member so as to be moved along the longitudinal axis thereof relative to the cylindrical housing, to accommodate the shock absorbent member and the columnar member in the cylindrical housing, (6) moving the support member and a shrinking mechanism relative to each other, and (7) actuating the shrinking mechanism to reduce the diameter of a part of the cylindrical housing.
Abstract:
The present invention provides a particulate catalyst containing at least one pyrophoric metal in reduced and optionally stabilized form and a metal oxide carrier and additionally containing paraffin wax, wherein the catalyst particles have a pore volume ranging from 0.2 to 0.8 cm3/g and the paraffin wax is present in an amount ranging from 30 to 95 vol %, basis the pore volume of the catalyst particles. In a preferred embodiment the paraffin wax contains an organic sulfur compound, in particular an organic polysulfide, in an amount ranging from 1 to 30 wt %. The present invention further provides a process for producing these particulate catalysts.
Abstract:
A core-shell structure comprises a core (2) comprising nanoparticles and a shell (4) coating the core (2), and its void space (3) formed by the core (2) and the shell (4) is controlled. A method of preparing the core-shell structure comprises: forming particles comprising a photoetchable semiconductor, metal or polymer and coating the particles with a shell (4) comprising a non-photoetchable semiconductor, metal or polymer, to form a core-shell structure (5); and irradiating the core-shell structure with a light having a controlled wavelength in the photoetching solution to form an adjustable void space inside a shell (3) within the core-shell structure by the size-selective photoetching method. The core-shell structure allows the preparation of a catalyst exhibiting an extremely high efficiency, and can be used as a precursor for preparing a nanomaterial required for a nanodevice.