Abstract:
In a magnetron device including a magnetron tube and a permanent magnet, cooling means is provided for cooling the magnetron tube and magnet, the cooling means defining cooling fluid flow paths in a direction substantially in parallel with the longitudinal axis of the magnetron tube.
Abstract:
Methods and systems are described for processing cellulosic and lignocellulosic materials and useful intermediates and products, such as energy and fuels. For example, irradiating methods and systems are described to aid in the processing of the cellulosic and lignocellulosic materials. The electron beam accelerator has multiple windows foils and these foils are cooled with cooling gas. In one configuration a secondary foil is integral to the electron beam accelerator and in another configuration the secondary foil is part of the enclosure for the biomass conveying system.
Abstract:
A light bulb includes a light guide, light source, and housing. The light guide is configured as an open-ended hollow body surrounding an internal volume and defining a longitudinal axis. The light guide has inner and outer major surfaces. The light source is configured to edge light the light guide. The housing is at one end of the light guide. In one embodiment, fins extend from the housing adjacent the outer major surface, each fin separated from the outer major surface by an air gap to allow air flow between the fin and outer major surface. In another embodiment, a heat sink is disposed in the internal volume and configured as a hollow body with a branched cross section. Each branch extends outward from a common center and defines an air flow channel that terminates in an orifice aligned with a respective through-slot of the light guide.
Abstract:
The borosilicate glass with improved solarization-resistance has a transmittance curve within an area bounded by respective curves defined by the corresponding equations τ=1.7·(λ−277) and τ=1.6·(λ−284) in a wavelength range of 283 nm to 325 nm. This glass has a composition, in wt. % based on oxide content, of: 55-82, SiO2; 10-20, B2O3; 1-10, Al2O3; 0-5, Li2O; 0-10, Na2O; 0-10, K2O; 0-10, ΣM2O; 0-5, MgO; 0-10, CaO; 0-5, SrO; 0-15, BaO; 0-15, ΣMO; 0-3, ZrO2; 0-5, ZnO; 0-2, CeO2; 0-3, WO3; 0-2, SnO2: 0-0.1, Fe2O3; 0.05-2, MoO3; 0-5, Bi2O3; 0-1, TiO2 and 0-5, oxides of selected rare earth and Group IVB to VIIIB elements. The transmittance is adjusted by varying the MoO3 content and if necessary the TiO2 and Bi2O3 content. The glass is especially suitable for use in a weathering apparatus.
Abstract:
A heat dissipating device for lightings includes a light source module, a heat sink, and a converter. The heat sink has a substrate and a plurality of heat dissipating fins extending outward from the substrate. A plurality of channels is formed between the heat dissipating fins. Insides of the channels respectively have a port open to the center of the heat sink. Thereby, the channels of the heat sink can effectively direct the airflow into the center of the heat sink, enhancing the heat dissipating effect of the heat sink.
Abstract:
A light source module including a planar light source, a heat dissipation medium, and a heat dissipation element are disclosed. The planar light source includes a light box, electrodes, and an insulation layer. The light box has a light emitting surface and a bottom surface opposite to the light emitting surface. The electrodes and the insulation layer are disposed on the bottom surface, and the insulation layer covers the electrodes. The heat dissipation medium is disposed on the insulation layer. The heat dissipation element includes conductive contact portions contacting the heat dissipation medium and a conductive connection portion connecting the conductive contact portions, wherein the orthographic projections of the conductive contact portions and the orthographic projections of the electrodes on the bottom surface are not overlapped by each other, and airflow channels are formed between the conductive contact portions, the conductive connection portion, and the heat dissipation medium.
Abstract:
A microchannel structure with a fine flow path through which a fluid flows, includes: a wavy plate member fabricated into a wavy form; an external peripheral wall member that surrounds the wavy plate member; and a spacer that ensures a spacing between opposed portions of the wavy plate member, wherein the fine flow path is defined by the wavy plate member and the external peripheral wall member.