摘要:
A semiconductor detector for detecting radiation comprises a first semiconductor part in which an electron and a hole are generated by incident radiation; a signal output electrode outputting a signal base on the electron or the hole; and a gettering part gettering impurities in the first semiconductor part. In addition, the semiconductor detector further comprises a second semiconductor part doped with a type of dopant impurities and having dopant impurity concentration higher than that of the first semiconductor part. The second semiconductor part is in contact with the first semiconductor part. The gettering part is in contact with the second semiconductor part and not in contact with the first semiconductor part.
摘要:
The present invention is a photodiode or photodiode array having improved ruggedness for a shallow junction photodiode which is typically used in the detection of short wavelengths of light. In one embodiment, the photodiode has a relatively deep, lightly-doped P zone underneath a P+ layer. By moving the shallow junction to a deeper junction in a range of 2-5 μm below the photodiode surface, the improved device has improved ruggedness, is less prone to degradation, and has an improved linear current.
摘要:
An integrated radiation sensor for detecting the presence of an environmental material and/or condition includes a sensing structure and first and second lateral bipolar junction transistors (BJTs) having opposite polarities. The first lateral BJT has a base that is electrically coupled to the sensing structure and is configured to generate an output signal indicative of a change in stored charge in the sensing structure. The second lateral BJT is configured to amplify the output signal of the first bipolar junction transistor. The first and second lateral BJTs, the sensing structure, and the substrate on which they are formed comprise a monolithic structure.
摘要:
An object of the present invention is to provide a radioactive ray detector for enabling to reduce the parasitic capacity lower than that of the conventional art, which is generated between the semiconductor elements of the radioactive ray detectors neighboring with, and a radioactive ray detecting apparatus applying that therein. The radioactive ray detector, comprises a substrate, a first semiconductor element and a second semiconductor element, which are provided to face to each other with positioning the substrate therebetween, a first electrode pattern, which is electrically connected with the first semiconductor element on a surface facing to an opposite side of the substrate, and a second electrode pattern, which is electrically connected with the second semiconductor element on a surface facing to an opposite side of the substrate, wherein the first electrode pattern and the second electrode pattern are arranged not to overlap with each other, when seeing through the substrate in a direction of thickness thereof.
摘要:
Disclosed is a semiconductor radiation detector element of Schottky barrier type, comprising: a compound semiconductor crystal including cadmium and tellurium as main components; and voltage application means for applying voltage to the compound semiconductor crystal. According to the present invention, said voltage application means includes a compound of indium, cadmium and tellurium: InxCdyTez formed on one surface of the compound semiconductor crystal. Preferably, the rate “z” of occupation of tellurium in the compound InxCdyTez is in the range of not less than 42.9%, but not greater than 50% by ratio of number of atoms. Furthermore, preferably, the rate “y” of occupation of cadmium in the compound InxCdyTez is in the range of not less than 0%, but not greater than 10% by ratio of number of atoms.
摘要:
In the representative radiation detectors described in the specification, an amorphous silicon layer is grown on one or both of the opposed electrode surfaces of a single crystal silicon substrate and the amorphous silicon layer extends to the side surface of the substrate. The corresponding electrode is deposited on the amorphous silicon layer. Detectors may also be made using a single crystal of Ge, GeAs or CdTe with an amorphous layer of the same or another semiconductor material.
摘要:
An epitaxial integrated E-dE solid state detector telescope comprising a dE detector produced on an epitaxial layer and a E detector produced on a high purity silicon layer, both of which are fabricated on a single silicon wafer having N-N.sup.+ -N type complex structure. Said dE and E detectors are electrically isolated by a very low resistive N.sup.+ type silicon layer, which is produced on the high purity N type silicon substrate by impurity diffusion technique and is buried under the epitaxial silicon layer. Electrodes of dE and E detectors are produced on both sides of the silicon wafer by means of evaporation of gold in a vacuum. Said electrodes are reverse biased and depletion layers which act as active regions of dE and E detectors are extended from outsides toward said buried layer, providing independent charge collections of carries produced by incident charged particles in dE and E detectors by said electrodes.
摘要:
A dosimetry-type radiation detector is provided which employs a polycrystalline, chlorine-compensated cadmium telluride wafer fabricated to operate as a photovoltaic current generator used as the basic detecting element. A photovoltaic junction is formed in the wafer by painting one face of the cadmium telluride wafer with an n-type semiconductive material. The opposite face of the wafer is painted with an electrically conductive material to serve as a current collector. The detector is mounted in a hermetically sealed vacuum containment. The detector is operated in a photovoltaic mode (zero bias) while DC coupled to a symmetrical differential current amplifier having a very low input impedance. The amplifier converts the current signal generated by radiation impinging upon the barrier surface face of the wafer to a voltage which is supplied to a voltmeter calibrated to read quantitatively the level of radiation incident upon the detecting wafer.
摘要:
The invention relates to a semiconductor detector for detecting ionizing radiation. The surface barrier required for the formation of field zones in the semiconductor body (1) is created by contact between the semiconductor body (1) and an electrolyte (3) in which it is immersed. In addition, the body is cut out, in the form of a comb in the example, in such a way as to increase its active surface as much as possible. The source (8) maintains the potential difference V.sub.o between the contact (5) on the body (1) and the cathode (7). The output signal s is extracted at (6).