Abstract:
Provided is a snapshot spectral domain optical coherence tomographer comprising a light source providing a plurality of beamlets; a beam splitter, splitting the plurality of beamlets into a reference arm and a sample arm; a first optical system that projects the sample arm onto multiple locations of a sample; a second optical system for collection of a plurality of reflected sample beamlets; a third optical system projecting the reference arm to a reflecting surface and receiving a plurality of reflected reference beamlets; a parallel interferometer that provides a plurality of interferograms from each of the plurality of sample beamlets with each of the plurality of reference beamlets; an optical image mapper configured to spatially separate the plurality of interferograms; a spectrometer configured to disperse each of the interferograms into its respective spectral components and project each interferogram in parallel; and a photodetector providing photon quantification.
Abstract:
The invention relates to scanning pulsed laser systems for optical imaging. Coherent dual scanning laser systems (CDSL) are disclosed and some applications thereof. Various alternatives for implementation are illustrated. In at least one embodiment a coherent dual scanning laser system (CDSL) includes two passively modelocked fiber oscillators. In some embodiments an effective CDSL is constructed with only one laser. At least one embodiment includes a coherent scanning laser system (CSL) for generating pulse pairs with a time varying time delay. A CDSL, effective CDSL, or CSL may be arranged in an imaging system for one or more of optical imaging, microscopy, micro-spectroscopy and/or THz imaging.
Abstract:
A detector for oil condition monitoring includes an optical fiber having a first end and a second end having an end face. A sensor body has a gap in which a sample of the oil may be received and a reflecting surface, the second end of the optical fiber being embedded in the sensor body and having an end face spaced from the reflecting surface across the gap. Light emitted from the optical fiber can pass through the sample of oil and be reflected by the reflecting surface back into the optical fiber. By interferometry of the respective signals, the condition of the oil can be determined.
Abstract:
A spectrometer for sampling interferograms in two dimensions offering a large spectral band and high spectral resolution with a relative compactness. The spectrometer includes a refracting surface, an array of detecting elements and an array of diffusion elements capturing means at the refracting surface of an interferogram delivered from two interference beams (F1, F2) and forming interference lines parallel to each other along the transverse axis (Ox) of the interferogram within the plane (xOy) of the refracting surface, the array of detection elements being parallel to the plane of the refracting surface and arranged to detect the spatial distribution of the interferogram, wherein the array is a two-dimensional array over an entirety of which the detections elements are disposed equidistantly, and wherein interference lines exhibit an angular shift with the capturing means.
Abstract:
Described herein is a hyperspectral imaging system in which a polarizing beam splitter, a Wollaston prism, an optical system, and a plane mirror are arranged on an optical axis of the imaging system. An imaging detector is provided on which radiation is focused by an imaging lens. The Wollaston prism is imaged on itself by the optical system and the plane mirror so that translation of the Wollaston prism in a direction parallel to a virtual split plane of the prism effectively provides an optical path length difference that is the same for all points in the object field.
Abstract:
An apparatus and method for measuring amplitude and/or phase of a molecular vibration uses a polarization modulated pump beam and a stimulating Stokes beam on a probe of a scanning probe microscope to detect a Raman scattered Stokes beam from the sample. The detected Raman scattered Stokes beam is used to derive at least one of the amplitude and the phase of the molecular vibration.
Abstract:
Provided are a multi-wavelength photoelectric measurement device, a confocal measurement device, an interference measurement device, and a color measurement device capable of measuring the characteristic amount of a measurement object such as the thickness, distance, displacement, or color with high accuracy using multi-wavelength light such as white light. The multi-wavelength photoelectric measurement device includes a laser light source, a light source optical member for concentrating light from the laser light source, a phosphor excited by light concentrated by the light source optical member, an optical fiber unit that includes one or a plurality of optical fibers and the phosphor disposed on a first end, receives light emitted by the phosphor from the first end, and transmits the received light toward a second end, and a head optical member that concentrates light emitted from the second end of the optical fiber unit toward a measurement object.
Abstract:
A method for determining optical properties of a corneal region. The method includes the steps of obtaining a combined tear film aqueous layer plus lipid layer thickness; obtaining a tear film lipid layer thickness; subtracting the tear film lipid layer thickness from the combined tear film aqueous layer plus lipid layer thickness to obtain a tear film aqueous layer thickness; and determining a corneal layer refractive index based on the tear film lipid layer thickness and the tear film aqueous layer thickness.
Abstract:
A single-shot terahertz imaging system including an interferometer and a terahertz spectrometer. The interferometer includes a beam splitter configured to receive input terahertz radiation and output first terahertz radiation and second terahertz radiation, a sample configured to reflect the first terahertz radiation, and a mirror configured to reflect the second terahertz radiation. The beam splitter is further configured to receive the reflected first terahertz radiation and the reflected second terahertz radiation, and output interfered terahertz radiation. The terahertz spectrometer is configured to measure the interfered terahertz radiation and includes a frequency dispersive element configured to receive the interfered terahertz radiation and output spatially dispersed terahertz radiation, and a terahertz radiation detector configured to determine the intensity of the spatially dispersed terahertz radiation.
Abstract:
Systems and methods for controlling the optical path length between a feedback enabled laser and a cavity, and hence the optical feedback phase. A phasor element, positioned along an optical path between the laser and the cavity coupling mirror, includes a gas medium within a volume defined by the phasor element. The phasor element is configured to adjust or control an optical path length of the laser light between the laser and the cavity coupling mirror by adjusting or controlling a density of the gas medium within the phasor volume.