Abstract:
This invention describes a novel design and construction method for a Collapsible Cryogenic Storage Vessel that can be used for storing cryogenic liquids. The vessel provides the ability to be packed for transport in a compact state and erected at the point of use. The vessel can be used multiple times. The vessel's volume can also be adjusted during use to minimize or eliminate head space in the vessel.
Abstract:
A liquid propane injection pump assembly is disclosed. In one example, the liquid propane injection pump assembly includes a connection tee having first, second, and third openings. A first inlet structure can be connected to the first opening, a second inlet structure can be connected to the second opening, and an outlet structure can be connected to the third opening. The first inlet structure can include a nozzle with an external taper while the outlet structure can include a barrel with a tapered internal passageway into which the nozzle extends.
Abstract:
An LNG tank as disclosed can include an inner shell of stainless steel and an outer shell spaced at a distance from the inner shell, the inner and outer shells defining an isolation space therebetween. A double-walled pipe of stainless steel connected to the LNG tank can include an inner pipe. The outer wall of the pipe can be connected to the inner shell by a bellows-like pipe fitting welded to the outer wall of the pipe(s) and to the inner shell of the tank. The inner pipe for extending into a tank room can be connected to a valve in a valve block, and the outer wall of the pipe extending into the tank room can be welded to the valve block to provide a continuous secondary barrier for the inner pipe between the inner shell of the tank and the valve block.
Abstract:
This invention relate to a tank, for transport and/or storage of cryogenic gases where the tanks insulation (1) are on the inside of the tank. The tanks insulation (1) has a leak proof layer (2) made of carbon fiber, fiberglass, plastic, metal or similar leak proof material.
Abstract:
A structure of a horizontal type cylindrical double-shell tank mounted on a ship includes: an inner shell storing liquefied gas; and an outer shell forming a vacuum space between the inner shell and the outer shell. A pair of support units supporting the inner shell is disposed between the inner shell and the outer shell. Each support unit includes: a plurality of cylindrical elements arranged in a circumferential direction of the tank such that an axial direction of each of the cylindrical elements coincides with a radial direction of the tank; a plurality of inner members each holding an end portion of a corresponding one of the cylindrical elements at the inner shell side; and a plurality of outer members each holding an end portion of a corresponding one of the cylindrical elements at the outer shell side. Each of the cylindrical elements is made of glass fiber reinforced plastic.
Abstract:
A cryogenic fluid delivery system includes a main tank system with a main tank adapted to contain a first supply of cryogenic liquid, and reserve tank system with reserve tank adapted to contain a second supply of cryogenic liquid. A pressure building circuit is adapted to delivery vapor to the head space of the main tank to build pressure in the main tank and a fuel delivery line supplies cryogenic fuel from either the main tank or the reserve tank to a use device. The reserve tank stores saturated cryogenic fuel that is delivered to the use device via the fuel delivery line while the cryogenic liquid in the main tank is being saturated. The fluid delivery system automatically switches to delivering cryogenic fuel from the main tank to the use device via the fuel delivery line upon saturation of the cryogenic liquid in the main tank.
Abstract:
A method of transporting natural gas by liquefaction of natural gas at ambient temperature, achieved by mixing the natural gas at high pressure with a hydrocarbon that is a stable liquid at ambient temperature and ambient pressure. The hydrocarbon liquid may be crude oil or a distillate of crude oil. The method includes: liquefaction: mixing the natural gas with the hydrocarbon liquid at an ambient temperature and a high pressure to generate a liquid mixture, which contains the natural gas dissolved in the hydrocarbon liquid; shipping: transporting the liquid mixture using a marine tanker, during which the liquid mixture is maintained at ambient temperature and the high pressure; and regasification: at the destination, releasing a gas from the liquid mixture by lowering the pressure of the liquid mixture. The hydrocarbon liquid may be used multiple times.
Abstract:
A supply source for delivery of a CO-containing dopant gas composition is provided. The composition includes a controlled amount of a diluent gas mixture such as xenon and hydrogen, which are each provided at controlled volumetric ratios to ensure optimal carbon ion implantation performance. The composition can be packaged as a dopant gas kit consisting of a CO-containing supply source and a diluent mixture supply source. Alternatively, the composition can be pre-mixed and introduced from a single source that can be actuated in response to a sub-atmospheric condition achieved along the discharge flow path to allow a controlled flow of the dopant mixture from the interior volume of the device into an ion source apparatus.
Abstract:
A nitrogen blanket system for small fuel tanks is disclosed that includes tank empty-space pressure control for sealed tanks that can hold pressure. The system includes a fuel tank storing some volume of fuel, such as diesel fuel. The remaining empty volume is filled with nitrogen by the disclosed system. The nitrogen blankets the liquid fuel and fills the remaining space in the fuel tank to prevent the accumulation of moisture and thereby prevent corrosion within the fuel tank.
Abstract:
A tank formed rack structure comprising at least two modules affixed to each other via bases and a method of reduced weight vertical storage of fuel tanks for use in motor vehicles wherein the fuel tanks form a portion of the rack superstructure.