Abstract:
A ReRAM memory cell includes a ReRAM device including a solid electrolyte layer disposed between a first ion-source electrode and a second electrode and a select circuit including two series-connected select transistors connected in series with the ReRAM device, each of the two series-connected select transistors having a gate connected to a separate control line.
Abstract:
Described herein are multiple designs for an improved analog switch for use in transmitting high voltage signals without using high voltage power supplies for the switch. The analog switches are able to pass and block input signals in the approximate range of −100V to +100V. The use of translinear loops and a bootstrap configuration results in a constant on-resistance of the symmetrical switches and matches the conductance of each analog switch to the transconductance of an NMOS transistor, which can be easily stabilized with a constant gm biasing scheme. In certain embodiments, a shunt termination (T-switch) configuration is used for better off-isolation, and each of the symmetrical switches has its own translinear loop and thus flexibility of on-resistance and termination voltage.
Abstract:
A circuit and method for controlling a power converter having a high-side and a low-side switch are provided. The circuit may include a comparator configured to receive a reference voltage at a first input and a ramp voltage at a second output, and to output a delay signal based on a comparison of the reference voltage and the ramp voltage. The delay signal may be configured to turn on one or more of the high-side switch and the low-side switch. The circuit may increase or decrease the reference voltage based on a dead time, which equals an amount of time when the high-side switch and the low-side switch are turned off. The circuit may include a first switch that is controlled to lower the reference voltage if a dead time exceeds a first threshold, and a second switch that is controlled to raise the reference voltage if the dead time delay signal is below a second threshold.
Abstract:
An improved analog switch for use in an ultrasound elastography probe is disclosed. The improved analog switch results in less heat dissipation compared to prior art analog switches.
Abstract:
A switching power converter has an input voltage source. An output load is coupled to the input voltage source. An inductive element is coupled to the load. A switch is coupled to the inductive element. A control circuit is coupled to the switch and the inductive element for activating and deactivating the switch, the control circuit activating and deactivating the switch based on a negative voltage drop across a resistive element of the control circuit.
Abstract:
A circuit module comprises a die attach pad with a surface and a plurality of leads surrounding the surface. A nonconductive adhesive is on the surface. A plurality of electronic circuit dies are on the surface of the die attach pad. Each die has a top surface and a bottom surface with the bottom surface on the adhesive. The top surface has a plurality of bonding pads. A first electronic circuit die has at least one routing path of a conductive material connecting a first bonding pad to a second bonding pad. A first bonding wire connects a bonding pad of a second electronic circuit die to the first bonding pad of the first electronic die. A second bonding wire connects the second bonding pad of the first electronic circuit die to a lead. Where one of the dies contains vertical circuit element, where a doped layer forms a terminal along the bottom surface of the layer, a trench filled with doped polysilicon extends from the top surface to the terminal to connect to the terminal. The doped polysilicon filled trench also serves to isolate and separate different circuit elements.
Abstract:
A circuit is disclosed for determining which of a multiplicity of LED strings in an illumination system has a fault. A group of circuits determines the maximum, minimum, midpoint between maximum and minimum, and average voltage of the group of LED string voltages in use, and examines the statistical properties of the LED string voltages. Comparators are used to find the strings which have the highest and lowest operating voltages, and to compare the midpoint and average voltages to determine whether the highest or lowest voltage string is responsible for causing a fault in the illumination system operation. Memory means are used to keep the said determined string turned off to prevent faulty operation.
Abstract:
A high voltage ESD-protection structure is used to protect delicate transistor circuits connected to an input or output of an integrated circuit bond pad from destructive high voltage ESD events by conducting at a controlled breakdown voltage that is less than a voltage that may cause destructive breakdown of the input and/or output circuits. The ESD-protection structure is able to absorb high current from these ESD events without snapback that would compromise operation of the higher voltage inputs and/or outputs of the integrated circuit. The ESD-protection structure will conduct when an ESD event occurs at a voltage above a controlled breakdown voltage of an electronic device, e.g., diode, in the ESD protection structure. Conduction of current from an ESD event having a voltage above the electronic device controlled breakdown voltage may be through another electronic device, e.g., transistor, having high current conduction capabilities, in the ESD-protection structure that may be controlled (triggered) by the device (e.g., diode) determining the controlled breakdown voltage (at which the ESD voltage is clamped to a desired value). The high voltage ESD-protection structure may be located substantially under the bond pad and may also include a low capacitance forward diode structure between the bond pad and the ESD clamp circuit.
Abstract:
A plurality of power supply modules having their outputs coupled in parallel are controlled for load balancing purposes through a direct current bus having filtered pulse width modulation (PWM) signals representative of the power outputs of each of the plurality of power supply modules. A local PWM signal for each of the plurality of power supply modules is filtered to a DC voltage and used to compare with an average power required from each of the plurality of power supply modules.