Abstract:
An embedded capacitor including a dielectric layer disposed between opposing faces of electrodes, in which the dielectric layer includes a high-loss dielectric layer and one or more insulating layers in contact with the high-loss dielectric layer. The dielectric layer may have a two-layer structure or a three-layer structure in which an insulating layer is additionally interposed between the high-loss dielectric layer and the electrode, thereby decreasing the dielectric loss while maintaining a high dielectric constant, compared to capacitors including a single-layer dielectric structure.
Abstract:
The present invention provides an asymmetric hybrid capacitor, in which metal oxide containing lithium and capable of producing lithium ions by an electrochemical reaction and supplying the lithium ions in an electrolyte in the capacitor is used as a positive electrode active material, and metal oxide capable of accepting the lithium ions supplied through the electrolyte is used as a negative electrode active material, such that the lithium ions of the same participate in the electrochemical reactions at both electrodes. As a result, it is possible to minimize reduction in ionic conductivity during charge/discharge, compared with conventional asymmetric hybrid capacitors, in which metal oxide and a carbon material are used as electrode materials, respectively. Moreover, since metal oxide having high specific capacitance is used to form both electrodes, it is possible to maximize energy density and power density.
Abstract:
A high dielectric polymer composite having a high dielectric constant is disclosed herein. The high dielectric polymer composite includes a conductive material doped with oxidizable metal nanoparticles or metal oxide nanoparticles to decrease dielectric loss, and a surfactant having a head portion containing an acidic functional group to form a passivation layer that surrounds the conductive material, resulting in increased dielectric constant.
Abstract:
An inductor embedded in a substrate, including a substrate, a coil electrode formed by filling a metal in a spiral hole formed on the substrate, an insulation layer formed on the substrate, and an external connection pad formed on the insulation layer to be connected to the coil electrode. The inductor-embedded substrate can be used as a cap for a micro device package by forming a cavity on its bottom surface.
Abstract:
Disclosed herein is a semiconductor electrode with improved power conversion efficiency through inhibition of recombination reactions of electrons. The semiconductor electrode comprises a transparent electrode consisting of a substrate and a conductive material coated on the substrate, and a metal oxide layer formed on the transparent electrode wherein the metal oxide layer contains a phosphate.Further disclosed is a solar cell employing the semiconductor electrode.
Abstract:
A method for manufacturing a semiconductor device in accordance with an embodiment of the present invention provides a channel region formed over a device isolation structure to form a semiconductor device including a SOI (Silicon-on-Insulator) channel structure, thereby decreasing ion implanting concentration of a channel region and improving tWR (Write Recovery time) and LTRAS (Long Time for Row Address Strobe) characteristics of the device.
Abstract:
An organic electrolytic solution and a lithium battery employing the same are provided. The organic electrolytic solution includes a lithium salt, an organic solvent containing a first solvent having a high dielectric constant and a second solvent having a low boiling point, and a surfactant including a hydrophobic portion having an aromatic group. The organic electrolytic solution effectively prevents the electrolytic solution from contacting the anode, thereby suppressing side reactions on the anode surface and improving discharge capacity, charge/discharge efficiency, lifespan, and battery reliability.
Abstract:
Disclosed are a heat dissipation material comprising a metallic glass and an organic vehicle and a light emitting diode package including at least one of a junction part, wherein the junction part includes a heat dissipation material including a metallic glass.
Abstract:
Disclosed are a heat dissipation material comprising a metallic glass and an organic vehicle and a light emitting diode package including at least one of a junction part, wherein the junction part includes a heat dissipation material including a metallic glass.
Abstract:
Provided are an apparatus and method for enhancing image quality of an input image captured by an image capturing device having an aperture with a plurality of openings employing different color filters. The image quality enhancing apparatus includes an ROI (region of interest) classifying unit classifying ROIs according to distances from the image capturing device of a captured input image by using a cluster-based image segmentation algorithm, a color channel registering unit determining motion vectors of color channels corresponding to the respective ROIs by analyzing a high frequency component of image data included in the ROIs, and moving the color channels based on the determined motion vectors to obtain a registered image of the respective ROIs, and an image fusing unit fusing the registered images of the respective ROIs to obtain a fused image.