Abstract:
Provided are a complementary nonvolatile memory device, methods of operating and manufacturing the same, a logic device and semiconductor device having the same, and a reading circuit for the same. The complementary nonvolatile memory device includes a first nonvolatile memory and a second nonvolatile memory which are sequentially stacked and have a complementary relationship. The first and second nonvolatile memories are arranged so that upper surfaces thereof are contiguous.
Abstract:
Provided is a method of manufacturing a nano-sized MTJ cell in which a contact in the MTJ cell is formed without forming a contact hole. The method of forming the MTJ cell includes forming an MTJ layer on a substrate, forming an MTJ cell region by patterning the MTJ layer, sequentially depositing an insulating layer and a mask layer on the MTJ layer, exposing an upper surface of the MTJ cell region by etching the mask layer and the insulating layer at the same etching rate, and depositing a metal layer on the insulating layer and the MTJ layer.
Abstract:
A magnetic RAM (MRAM) using a thermo-magnetic spontaneous Hall effect includes a MOS transistor formed on a substrate; a heating layer formed above the MOS transistor and connected to a source region of the MOS transistor; a memory layer having a data write area to which data is written, the data write area being formed on the heating means; a bit line formed on the data write area; an upper insulating film formed on the bit line and the memory layer; and a write line formed on the upper insulating film so that a magnetic field necessary for writing data is generated in at least the data write area of the memory layer. The MRAM writes or reads data using the fact that a spontaneous Hall voltage greatly differs according to the magnetization state of a memory layer, thereby providing the device a high data sensing margin.
Abstract:
A magneto-resistive random access memory includes a MOS transistor having a first gate and source and drain junctions on a substrate, a lower electrode connected to the source junction, a first magnetic layer on the lower electrode, a dielectric barrier layer including aluminum and hafnium on the first magnetic layer which, together with the first magnetic layer, form a potential well, a second magnetic layer on the dielectric barrier layer opposite the first magnetic layer, an upper electrode on the second magnetic layer, a second gate interposed between the first gate and the lower electrode to control the magnetic data of one of the first and second magnetic layers, and a bit line positioned orthogonal to the first gate and electrically connected to the upper electrode. Improved characteristics of the barrier layer increase a magnetic resistance ratio and improve data storage capacity of the magneto-resistive random access memory.
Abstract:
A process of preparing a yttrium based superconductor including partial melting a body of YBa.sub.2 Cu.sub.3 O.sub.y compound which is stacked on a Y.sub.2 BaCuO.sub.5 plate, to produce a liquid phase, BaCu.sub.2.CuO which flows down into the Y.sub.2 BaCuO.sub.5 plate, a peritectic reaction of the Y.sub.2 BaCuO.sub.5 of the plate, with the liquid phase, BaCuO.sub.2.CuO, to form a YBa.sub.2 Cu.sub.3 O.sub.y phase, and cooling and annealing the resulting YBa.sub.2 Cu.sub.3 O.sub.y to gain superconducting properties, in which weak-links are reduced by the well oriented-grains with few voids, and the grains of the fine grained Y.sub.2 BaCuO.sub.5 phase act as flux pinning centers, which increases the critical current density.
Abstract:
In a simplified light sensing circuit, a light sensing apparatus including the light sensing circuit, a method of driving the light sensing apparatus, and an image acquisition apparatus and optical touch screen apparatus including the light sensing apparatus, the light sensing circuit includes an oxide semiconductor transistor including a channel layer including an oxide semiconductor material, for each pixel. The oxide semiconductor transistor is configured to operate as a light sensing device that senses light and a switch that outputs light sensing data.
Abstract:
A light-sensing apparatus in which a light sensor transistor in a light-sensing pixel is formed of an oxide semiconductor transistor for sensing light, a method of driving the light-sensing apparatus, and an optical touch screen apparatus including the light-sensing apparatus. The light-sensing apparatus includes a light-sensing pixel array having a plurality of light-sensing pixels arranged in rows and columns, and a plurality of gate lines which are arranged in a row direction and respectively provide a gate voltage to the light-sensing pixel. Each of the light-sensing pixels includes a light sensor transistor for sensing light and a switch transistor for outputting a light-sensing signal from the light sensor transistor, and gates of the light sensor transistors of the light-sensing pixels arranged in an arbitrary row are connected to a gate line arranged in a row previous or next to the arbitrary row.
Abstract:
A transistor may include an active layer having a plurality of oxide semiconductor layers and an insulating layer disposed therebetween. The insulating layer may include a material that has higher etch selectivity with respect to at least one of the plurality of oxide semiconductor layers. The electronic device may include a first transistor and a second transistor connected to the first transistor. The second transistor may include an active layer having a different structure from that of the active layer included in the first transistor. The active layer of the second transistor may have the same structure as one of the plurality of oxide semiconductor layers constituting the active layer of the first transistor.
Abstract:
Optical touch screen apparatuses with remote sensing and touch sensing by using a light sensor transistor including an oxide semiconductor transistor. The optical touch screen apparatus includes a pixel array of a plurality of sensing pixels arranged in a plurality of rows and a plurality of columns. Each of the sensing pixels includes a light sensing pixel for sensing light that is irradiated by an external light source and a touch sensing pixel for sensing display light that is reflected by a screen touch. The light sensing pixel includes a first light sensor transistor and a first switch transistor connected each other in series, and the touch sensing pixel includes a second light sensor transistor and a second switch transistor connected each other in series.
Abstract:
A light sensing circuit using an oxide semiconductor transistor, a method of manufacturing the light sensing circuit, and an optical touch panel including the light sensing circuit. Because the light sensing circuit includes only one light sensor transistor and one switch transistor formed on the same substrate, a structure of the light sensing circuit is simplified. Furthermore, because the light sensor transistor and the switch transistor have the same structure, a method of manufacturing the light sensing circuit is also simplified. Also, since an optical touch panel or an image acquisition apparatus using the light sensing circuit uses the light sensing circuit having a simple structure and does not use a capacitor, the optical touch panel or the image acquisition apparatus may be made thinner and larger.