Abstract:
A method of stabilizing a poly(paraxylylene) dielectric thin film after forming the dielectric thin film via transport polymerization is disclosed, wherein the method includes annealing the dielectric thin film under at least one of a reductive atmosphere and a vacuum at a temperature above a reversible solid phase transition temperature of the dielectric film to convert the film from a lower temperature phase to a higher temperature phase, and cooling the dielectric thin film at a sufficient rate to a temperature below the solid phase transition temperature of the dielectric thin film to trap substantial portions of the film in the higher temperature phase.
Abstract:
An integrated circuit including a composite polymer dielectric layer formed on a substrate is disclosed, wherein the composite polymer dielectric layer includes a first silane-containing layer formed on the substrate, wherein the first silane-containing layer is formed at least partially from an organosilane material, a polymer dielectric layer formed on the first silane-containing layer, and a second silane-containing layer formed on the polymer dielectric layer. In some embodiments, the first silane-containing layer and second silane-containing layer may be formed from organosilane materials having at least one unsaturated bond capable of free radical polymerization. Systems and methods for making the disclosed integrated circuits are also provided.
Abstract:
An organic light-emitting display is disclosed, wherein the organic light-emitting display includes a thin film transistor portion including an array of thin film transistors, and a light-emitting portion including an array of organic light-emitting elements in electrical communication with the array of thin film transistors, wherein the light-emitting portion is formed from a plurality of layers of materials, and wherein the plurality of layers of materials in the light-emitting portion includes a plurality of passive polymer layers each formed from a single polymer material. Systems and methods for forming organic light-emitting displays are also disclosed.
Abstract:
A Process Module (“PM”) is designed to facilitate Transport Polymerization (“TP”) of precursors that are useful for preparations of low Dielectric Constant (“∈”) films. The PM consists primarily of a Material Delivery System (“MDS”) with a high temperature Vapor Phase Controller (“VFC”), a TP Reactor, a Treatment Chamber, a Deposition Chamber and a Pumping System. The PM is designed to facilitate TP for new precursors and for film deposition and stabilization processes.
Abstract:
A reactor for forming a reactive intermediate from a precursor having a general formula of Xm—Ar—(CZ′Z″Y)n is disclosed, wherein X and Y are leaving groups, wherein Ar is an aromatic moiety and wherein the reactive intermediate has at least two free radicals. The reactor includes an inlet for admitting a flow of the precursor into the reactor, an interior having a surface at least partially formed from a material M that reacts with at least one of X and Y to remove at least one of X and Y from the precursor and to form at least one of a compound MaYb and a compound McXd, an outlet for admitting a flow of the reactive intermediate out of the reactor.
Abstract:
Structures and methods for preventing fluorine diffusion from a fluorinated dielectric material having a low dielectric constant are disclosed. Various fluorine diffusion barriers are described, each of which comprises doped or undoped silicon in combination with tantalum, tantalum nitride, tantalum silicide, cobalt, cobalt silicide, or mixtures thereof. Fluorine diffusion from fluorinated dielectrics is stopped by the barriers at temperatures as high as 450° C. In practice, one of the disclosed fluorine diffusion barriers is positioned between a fluorine-containing insulator and a conductive metal interconnect or metal interconnect diffusion barrier, thereby preventing diffusion of the fluorine atoms into the adjacent interconnect/barrier.
Abstract:
A wireless communication system includes a processor that receives a downlink control information (DCI) associated with a transmission channel used for transmitting a RF signal and a control channel element index associated with the DCI. The processor determines a scrambling code based on the control channel element index for the DCI, scrambles the DCI using the scrambling code, generates a scrambled DCI, and modulates the scrambled. DCI to generate a modulated symbol. The processor uses look-up tables to determine a resource element group (REG) based on the control channel element index, map the modulated symbol to the REG, and generate a transmission frame.
Abstract:
Described is a current sensor comprising: a main resistive branch having a target device coupled to a load at a first node; a replica resistive branch having a replica device which is a replica of the target device, the replica device coupled to a current digital to analog converter (DAC) at a second node; and an analog to digital converter (ADC) coupled directly or indirectly to the first and second nodes, the ADC to generate an output coupled to the current DAC.
Abstract:
In one embodiment, an electrochemical cell such as a fuel cell is provided to include a bipolar plate. The bipolar plate includes a metal substrate defining at least one flow channel having a channel span of no greater than 1.0 millimeter; and the metal substrate includes a stainless steel material less precious than stainless steel SS316L. In certain instances, the channel span is of 0.7 to 0.9 millimeters. In certain other instances, the flow channel has a channel depth of 0.3 to 0.5 millimeters. In yet other instances, the plate substrate includes stainless steel SS301, stainless steel SS302, or combinations thereof. In another embodiment, the electrochemical cell further includes a gas diffusion layer disposed next to the bipolar plate.
Abstract:
A method of encapsulating an organic light-emitting device is disclosed, wherein the device includes a light-emitting portion and an electrical contact portion, the method including forming a polymer layer over the light-emitting portion and the electrical contact portion of the device; forming a separation in the polymer layer between a portion of the polymer layer disposed over the light-emitting portion of the device and a portion of the polymer layer disposed over the electrical contact portion of the device; adhering a film removal structure to the portion of the polymer layer disposed over the electrical contact portion of the device; and removing the film removal structure, thereby causing the removal of the portion of the polymer layer disposed over the electrical contact portion of the device.