ULTRA-BRIGHT PASSIVATED ALUMINUM NANO-FLAKE PIGMENTS
    51.
    发明申请
    ULTRA-BRIGHT PASSIVATED ALUMINUM NANO-FLAKE PIGMENTS 有权
    超亮度钝化铝纳米片

    公开(公告)号:US20150111027A1

    公开(公告)日:2015-04-23

    申请号:US14562437

    申请日:2014-12-05

    Abstract: An organic release agent is vacuum deposited over a substrate and surface treated with a plasma or ion-beam source in a gas rich in oxygen-based functional groups to harden a very thin layer of the surface of the deposited layer in passivating environment. Aluminum is subsequently vacuum deposited onto the hardened release layer to form a very flat and specular thin film. The film is exposed to a plasma gas containing oxygen or nitrogen to passivate its surface. The resulting product is separated from the substrate, crushed to break up the film into aluminum flakes, and mixed in a solvent to separate the still extractable release layer from the aluminum flakes. The surface treatment of the release layer greatly reduces wrinkles in the flakes, improving the optical characteristics of the flakes. The passivation of the flake material virtually eliminates subsequent corrosion from exposure to moisture.

    Abstract translation: 将有机剥离剂真空沉积在基材上并用富含氧基官能团的气体中的等离子体或离子束源进行表面处理,以在钝化环境中硬化沉积层表面的非常薄的层。 铝随后真空沉积在硬化的剥离层上以形成非常平坦和镜面的薄膜。 该膜暴露于含有氧气或氮气的等离子体气体以钝化其表面。 将所得产物与基材分离,粉碎以将薄膜分解成铝薄片,并在溶剂中混合以将可提取的脱模层与铝薄片分离。 脱模层的表面处理大大减少了薄片的皱纹,提高了薄片的光学特性。 薄片材料的钝化实际上消除了暴露于水分后的后续腐蚀。

    Self-assembled functional layers in multilayer structures
    52.
    发明授权
    Self-assembled functional layers in multilayer structures 有权
    多层结构中的自组装功能层

    公开(公告)号:US08840970B2

    公开(公告)日:2014-09-23

    申请号:US13007639

    申请日:2011-01-16

    Abstract: Functionalized multilayer structures are manufactured by a process whereby a substrate material is treated with a reactive-gas plasma to form an activated layer on the surface thereof, and then by depositing a liquid functional monomer on the activated layer to form a self-assembled functional layer. Any excess liquid monomer must be allowed to re-evaporate in order to obtain optimal functionality on the surface of the resulting structure. The deposition of the liquid layer is preferably carried out with high kinetic energy to ensure complete penetration of the monomer throughout the body of the substrate. For particular applications, prior to formation of the reactive layer the substrate may be coated with a high glass-transition temperature polymer or a metallic layer.

    Abstract translation: 功能化多层结构是通过以下方法制造的,其中基板材料用反应气体等离子体处理以在其表面上形成活化层,然后通过在活化层上沉积液体官能单体以形成自组装功能层 。 必须允许任何多余的液体单体再蒸发,以便在所得结构的表面上获得最佳的功能。 液体层的沉积优选以高动能进行,以确保单体完全渗透到基底的整个体内。 对于特定应用,在形成反应层之前,可以用高玻璃化转变温度聚合物或金属层涂覆基材。

    Methods for fabrication of polymer-based optically variable devices
    53.
    发明授权
    Methods for fabrication of polymer-based optically variable devices 有权
    基于聚合物的光学可变装置的制造方法

    公开(公告)号:US08815337B2

    公开(公告)日:2014-08-26

    申请号:US13091635

    申请日:2011-04-21

    CPC classification number: B29D11/0074 Y10T428/24942

    Abstract: Polymer-based optically-variable devices (OVDs) for security applications and methods for producing the same. The uniformity of thickness of the structure of such devices is optimized by controlling previously neglected process parameters such as the temperature distribution of the deposition nozzle, the substrate and the deposition drum, their emissivities, the micro-roughness of the substrate, and the rate of monomer re-evaporation. Re-evaporation is minimized by initiating radiation-curing within two seconds of monomer deposition. A method includes equipment reducing all sources of emissivity non-homogeneities, such as surface blemishes in the surface areas exposed to the substrate to preferentially fabricate substrates with haziness less than 5% and gloss greater than 90%. Controlling, a maximum variation of thickness of the transmissive layer of an OVD ensures that no appreciable color-shift variation is visible to the naked eye.

    Abstract translation: 用于安全应用的基于聚合物的光学可变装置(OVD)及其制造方法。 通过控制先前忽略的工艺参数,例如沉积喷嘴,衬底和沉积鼓的温度分布,它们的发射率,衬底的微粗糙度以及衬底的微观粗糙度来优化这些器件的结构的厚度的均匀性 单体再蒸发。 通过在单体沉积的两秒钟内启动辐射固化,使再蒸发最小化。 一种方法包括减少发射率不均匀性的所有来源的设备,例如暴露于基材的表面区域中的表面瑕疵,以优先制造具有小于5%的雾度和大于90%的光泽的基材。 控制,OVD的透射层的厚度的最大变化确保肉眼看不到明显的色移变化。

    Nano-structured dielectric composite
    54.
    发明授权
    Nano-structured dielectric composite 有权
    纳米结构介电复合材料

    公开(公告)号:US08586173B2

    公开(公告)日:2013-11-19

    申请号:US12828146

    申请日:2010-06-30

    Abstract: A multilayer dielectric structure is formed by vacuum depositing two-dimensional matrices of nanoparticles embedded in polymer dielectric layers that are thicker than the effective diameter of the nanoparticles, so as to produce a void-free, structured, three-dimensional lattice of nanoparticles in a polymeric dielectric material. As a result of the continuous, repeated, and controlled deposition process, each two-dimensional matrix of nanoparticles consists of a layer of uniformly distributed particles embedded in polymer and separated from adjacent matrix layers by continuous polymer dielectric layers, thus forming a precise three-dimensional nanoparticle matrix defined by the size and density of the nanoparticles in each matrix layer and by the thickness of the polymer layers between them. The resulting structured nanodielectric exhibits very high values of dielectric constant as well as high dielectric strength.

    Abstract translation: 通过真空沉积嵌入在聚合物电介质层中的纳米颗粒的有效直径的纳米颗粒的二维矩阵形成多层介电结构,以便产生纳米颗粒的无空隙结构的三维晶格 聚合物介电材料。 作为连续,重复和控制的沉积过程的结果,纳米颗粒的每个二维矩阵由均匀分布的颗粒层嵌入聚合物中并且通过连续的聚合物介电层与相邻的基质层分离,从而形成精确的三维结构, 由每个基质层中的纳米颗粒的尺寸和密度以及它们之间的聚合物层的厚度限定的三维纳米颗粒基质。 所得到的结构化纳米介电材料具有非常高的介电常数以及高介电强度。

    Conductive flakes manufactured by combined sputtering and vapor deposition
    57.
    发明授权
    Conductive flakes manufactured by combined sputtering and vapor deposition 有权
    通过组合溅射和​​气相沉积制造的导电薄片

    公开(公告)号:US07754106B2

    公开(公告)日:2010-07-13

    申请号:US11448362

    申请日:2006-06-07

    Abstract: A release agent is flash evaporated and deposited onto a support substrate under conventional vapor-deposition conditions and a conductive metal oxide, such as ITO, is subsequently sputtered or deposited by reactive electron beam onto the resulting release layer in the same process chamber to form a very thin film of conductive material. The resulting multilayer product is separated from the support substrate, crushed to brake up the metal-oxide film into flakes, and heated or mixed in a solvent to separate the soluble release layer from the metallic flakes. Thus, by judiciously controlling the deposition of the ITO on the release layer, transparent flakes may be obtained with the desired optical and physical characteristics.

    Abstract translation: 在常规气相沉积条件下,将释放剂快速蒸发并沉积到支撑衬底上,然后将诸如ITO的导电金属氧化物随后通过反应性电子束溅射或沉积到相同处理室中的所得释放层上,形成 非常薄的导电材料。 将得到的多层产品与支撑基材分离,粉碎以将金属氧化物膜制成薄片,并在溶剂中加热或混合以将可溶性脱离层与金属薄片分离。 因此,通过明智地控制ITO在剥离层上的沉积,可以获得具有期望的光学和物理特性的透明薄片。

Patent Agency Ranking