Abstract:
Systems and methods for a high output, high color quality light are disclosed. In some embodiments, such a light may include a light fixture including one or more LEDs configured to output a cumulative light output; wherein the cumulative light output comprises an intensity of greater than or equal to 10,000 lumens; and wherein the cumulative light output comprises a CRI of at least 90.
Abstract:
An LED light fixture including a heat-conductive overstructure having upper and lower surfaces and a plurality of upwardly-protruding elongate fins which extend along the upper surface adjacent to at least one opening through the fixture permitting air flow from beneath the lower surface to above the upper surface. An LED light source is secured with respect to the lower surface. The fins have heights which gradually increase toward fin-ends proximal to the at least one opening.
Abstract:
A luminaire for use in lighting a large open space such as a parking lot or deck of a parking garage includes a plurality of optical waveguides disposed in side-by-side relationship and together defining a closed path and at least one LED associated with each optical waveguide and disposed at a first end of the associated optical waveguide.
Abstract:
An LED light fixture including a housing portion and a base together defining an open space therebetween permitting air/water-flow therethrough. The housing portion forms a chamber enclosing at least one driver. The base extends from the housing portion and supports at least one LED illuminator outside the chamber. The housing portion and the base may each be formed as part of a one piece with the open space along at least three sides of the base. Alternatively, the base may be a separate structure secured with respect to the housing. Such base may be a single-piece extrusion supporting a plurality of LED modules or comprise a plurality of extruded heat sinks. Each heat sink may support one or more LED modules.
Abstract:
An LED light fixture including a mounting surface which supports a circuit board with at least one LED light source spaced thereon, and an optical member which has a back side having a groove facing the mounting surface and surrounding the circuit board. The groove is filled with a resilient in-situ-formed compressible gasket material sealingly engaged with the mounting surface to environmentally seal the circuit board. The mounting surface may be of a heat-sink structure. The in-situ-formed gasket has an inner edge and a plurality of inward projections spaced therealong. Each inward projection extends inwardly to a position facing the circuit board and presses the circuit board against the mounting surface, thereby facilitating heat transfer away from the circuit board.
Abstract:
An LED floodlight fixture LED light fixture including a plurality of heat-sink-mounted LED-array modules, each module engaging an LED-adjacent surface of a heat-sink base for transfer of heat from the module, and at least one venting aperture through the heat-sink base to provide air ingress to the heat-dissipating surfaces adjacent to the aperture. The LED light fixture may include a plurality of heat sinks, each heat sink with its own heat-dissipating surfaces and heat-sink base which has one of the LED-array modules engaged thereon. The heat-sink base is wider than the module thereon such that the heat-sink base includes a beyond-module portion. The venting aperture(s) is/are through the beyond-module portion of the heat-sink base. The inventive light fixture may include a housing and an LED assembly which includes the heat-sink-mounted LED-array modules. The LED assembly and the housing form a venting gap therebetween to provide air ingress along the heat-sink base to the heat-dissipating surfaces.
Abstract:
An LED light fixture including a mounting surface which supports a circuit board with at least one LED light source spaced thereon, and an optical member which has a back side having a groove facing the mounting surface and surrounding the circuit board. The groove is filled with a resilient in-situ-formed compressible gasket material sealingly engaged with the mounting surface to environmentally seal the circuit board. The mounting surface may be of a heat-sink structure. The in-situ-formed gasket has an inner edge and a plurality of inward projections spaced therealong. Each inward projection extends inwardly to a position facing the circuit board and presses the circuit board against the mounting surface, thereby facilitating heat transfer away from the circuit board.
Abstract:
A lighting fixture including a light-emitting arrangement having first and second ends. The light-emitting arrangement includes (a) at least one LED at the first end and (b) a heat sink connected to the at least one LED and having a length extending therefrom toward the second end. There are LED power circuitry components spaced from the light-emitting arrangement and positioned adjacent the second end of the light-emitting arrangement. The fixture includes an elongate tubular channel formed along the length of the heat sink and having wiring therein from the power-circuitry components to the LED(s).
Abstract:
A lighting apparatus is provided with a first housing assembly formed from a thermally conductive material and a second housing assembly formed of a thermally conductive material. At least one electrical component is positioned within the first housing assembly and the at least one electrical component is in thermally conductive contact with the first housing assembly. At least one light source is in thermally conductive contact with the second housing assembly. The second housing assembly is not in thermally conductive contact with the first housing assembly, such that thermal energy from the first housing assembly does not directly transfer to the second housing assembly.