Abstract:
Integrated circuits with dual silicide contacts are provided. In an embodiment, an integrated circuit includes a semiconductor substrate including a first area and a second area. The integrated circuit includes a first source/drain region in and/or overlying the first area of the semiconductor substrate and a second source/drain region in and/or overlying the second area of the semiconductor substrate. The integrated circuit further includes a first contact over the first source/drain region and comprising a first metal silicide. The integrated circuit also includes a second contact over the second source/drain region and comprising a second metal silicide different from the first metal silicide.
Abstract:
Three-dimensional electrostatic discharge (ESD) semiconductor devices are fabricated together with three-dimensional non-ESD semiconductor devices. For example, an ESD diode and FinFET are fabricated on the same bulk semiconductor substrate. A spacer merger technique is used in the ESD portion of a substrate to create double-width fins on which the ESD devices can be made larger to handle more current.
Abstract:
Integrated circuits with relaxed silicon and germanium fins and methods for fabricating such integrated circuits are provided. The method includes a forming a crystalline silicon and germanium composite layer overlying a crystalline silicon substrate, where a composite layer crystal lattice is relaxed. A fin is formed in the composite layer, and a gate is formed overlying the fin. A portion of the fin is removed on opposite sides of the gate to form a drain cavity and a source cavity, and a source and a drain are formed in the source cavity and drain cavity, respectively.
Abstract:
Devices and methods for forming semiconductor devices with fins at tight fin pitches are provided. One method includes, for instance: obtaining an intermediate semiconductor device; growing an epi layer over the substrate; forming a doped layer below the epi layer; depositing a first oxide layer on the epi layer; applying a dielectric material on the first oxide layer; and depositing a lithography stack on the dielectric material. One intermediate semiconductor device includes, for instance: a substrate with at least one n-well region and at least one p-well region; a doped layer over the substrate; an epi layer over the doped layer; a first oxide layer over the epi layer; a dielectric layer over the first oxide layer; and a lithography stack over the dielectric layer.
Abstract:
Approaches for providing a narrow diffusion break in a fin field effect transistor (FinFET) device are disclosed. Specifically, the FinFET device is provided with a set of fins formed from a substrate, and an opening formed through the set of fins, the opening oriented substantially perpendicular to an orientation of the set of fins. This provides a FinFET device capable of achieving cross-the-fins insulation with an opening size that is adjustable from approximately 20-30 nm.
Abstract:
Disclosed herein are various methods of forming replacement gate structures and conductive contacts on semiconductor devices and devices incorporating the same. One exemplary device includes a plurality of gate structures positioned above a semiconducting substrate, at least one sidewall spacer positioned proximate respective sidewalls of the gate structures, and a metal silicide region in a source/drain region of the semiconducting substrate, the metal silicide region extending laterally so as to contact the sidewall spacer positioned proximate each of the gate structures. Furthermore, the device also includes, among other things, a conductive contact positioned between the plurality of gate structures, the conductive contact having a lower portion that conductively contacts the metal silicide region and an upper portion positioned above the lower portion, wherein the lower portion is laterally wider than the upper portion and extends laterally so as to contact the sidewall spacers positioned proximate each of the gate structures.
Abstract:
A method for fabricating a FinFET integrated circuit includes depositing a first polysilicon layer at a first end of a diffusion region and a second polysilicon layer at a second end of the diffusion region; diffusing an n-type material into the diffusion region to form a diffused resistor; and epitaxially growing a silicon material between the first and second polysilicon layers to form fins structures over the diffused resistor and spanning between the first and second polysilicon layers.