摘要:
A transition metal oxide dielectric material is doped with a non-metal in order to enhance the electrical properties of the metal oxide. In a preferred embodiment, a transition metal oxide is deposited over a bottom electrode and implanted with a dopant. In a preferred embodiment, the metal oxide is hafnium oxide or zirconium oxide and the dopant is nitrogen. The dopant can convert the crystal structure of the hafnium oxide or zirconium oxide to a tetragonal structure and increase the dielectric constant of the metal oxide.
摘要:
In one aspect, the invention encompasses a method of fabricating an interconnect for a semiconductor component. A semiconductor substrate is provided, and an opening is formed which extends entirely through the substrate. A first material is deposited along sidewalls of the opening at a temperature of less than or equal to about 200° C. The deposition can comprise one or both of atomic layer deposition and chemical vapor deposition, and the first material can comprise a metal nitride. A solder-wetting material is formed over a surface of the first material. The solder-wetting material can comprise, for example, nickel. Subsequently, solder is provided within the opening and over the solder-wetting material.
摘要:
A transition metal oxide dielectric material is doped with a non-metal in order to enhance the electrical properties of the metal oxide. In a preferred embodiment, a transition metal oxide is deposited over a bottom electrode and implanted with a dopant. In a preferred embodiment, the metal oxide is hafnium oxide or zirconium oxide and the dopant is nitrogen. The dopant can convert the crystal structure of the hafnium oxide or zirconium oxide to a tetragonal structure and increase the dielectric constant of the metal oxide.
摘要:
An integrated circuit having differently-sized features wherein the smaller features have a pitch multiplied relationship with the larger features, which are of such size as to be formed by conventional lithography.
摘要:
Differently-sized features of an integrated circuit are formed by etching a substrate using a mask which is formed by combining two separately formed patterns. Pitch multiplication is used to form the relatively small features of the first pattern and conventional photolithography used to form the relatively large features of the second pattern. Pitch multiplication is accomplished by patterning a photoresist and then etching that pattern into an amorphous carbon layer. Sidewall spacers are then formed on the sidewalls of the amorphous carbon. The amorphous carbon is removed, leaving behind the sidewall spacers, which define the first mask pattern. A bottom anti-reflective coating (BARC) is then deposited around the spacers to form a planar surface and a photoresist layer is formed over the BARC. The photoresist is next patterned by conventional photolithography to form the second pattern, which is then is transferred to the BARC. The combined pattern made out by the first pattern and the second pattern is transferred to an underlying amorphous silicon layer and the pattern is subjected to a carbon strip to remove BARC and photoresist material. The combined pattern is then transferred to the silicon oxide layer and then to an amorphous carbon mask layer. The combined mask pattern, having features of difference sizes, is then etched into the underlying substrate through the amorphous carbon hard mask layer.
摘要:
The invention includes atomic layer deposition methods of depositing an oxide on a substrate. In one implementation, a substrate is positioned within a deposition chamber. A first species is chemisorbed onto the substrate to form a first species monolayer within the deposition chamber from a gaseous precursor. The chemisorbed first species is contacted with remote plasma oxygen derived at least in part from at least one of O2 and O3 and with remote plasma nitrogen effective to react with the first species to form a monolayer comprising an oxide of a component of the first species monolayer. The chemisorbing and the contacting with remote plasma oxygen and with remote plasma nitrogen are successively repeated effective to form porous oxide on the substrate. Other aspects and implementations are contemplated.
摘要:
In one aspect, the invention encompasses a method of fabricating an interconnect for a semiconductor component. A semiconductor substrate is provided, and an opening is formed which extends entirely through the substrate. A first material is deposited along sidewalls of the opening at a temperature of less than or equal to about 200° C. The deposition can comprise one or both of atomic layer deposition and chemical vapor deposition, and the first material can comprise a metal nitride. A solder-wetting material is formed over a surface of the first material. The solder-wetting material can comprise, for example, nickel. Subsequently, solder is provided within the opening and over the solder-wetting material.
摘要:
Pitch multiplication is performed using a two step process to deposit spacer material on mandrels. The precursors of the first step react minimally with the mandrels, forming a barrier layer against chemical reactions for the deposition process of the second step, which uses precursors more reactive with the mandrels. Where the mandrels are formed of amorphous carbon and the spacer material is silicon oxide, the silicon oxide is first deposited by a plasma enhanced deposition process and then by a thermal chemical vapor deposition process. Oxygen gas and plasma-enhanced tetraethylorthosilicate (TEOS) are used as reactants in the plasma enhanced process, while ozone and TEOS are used as reactants in the thermal chemical vapor deposition process. The oxygen gas is less reactive with the amorphous carbon than ozone, thereby minimizing deformation of the mandrels caused by oxidation of the amorphous carbon.
摘要:
Differently-sized features of an integrated circuit are formed by etching a substrate using a mask which is formed by combining two separately formed patterns. Pitch multiplication is used to form the relatively small features of the first pattern and conventional photolithography used to form the relatively large features of the second pattern. Pitch multiplication is accomplished by patterning a photoresist and then etching that pattern into an amorphous carbon layer. Sidewall spacers are then formed on the sidewalls of the amorphous carbon. The amorphous carbon is removed, leaving behind the sidewall spacers, which define the first mask pattern. A bottom anti-reflective coating (BARC) is then deposited around the spacers to form a planar surface and a photoresist layer is formed over the BARC. The photoresist is next patterned by conventional photolithography to form the second pattern, which is then is transferred to the BARC. The combined pattern made out by the first pattern and the second pattern is transferred to an underlying amorphous silicon layer and the pattern is subjected to a carbon strip to remove BARC and photoresist material. The combined pattern is then transferred to the silicon oxide layer and then to an amorphous carbon mask layer. The combined mask pattern, having features of difference sizes, is then etched into the underlying substrate through the amorphous carbon hard mask layer.
摘要:
Differently-sized features of an integrated circuit are formed by etching a substrate using a mask which is formed by combining two separately formed patterns. Pitch multiplication is used to form the relatively small features of the first pattern and conventional photolithography used to form the relatively large features of the second pattern. Pitch multiplication is accomplished by patterning a photoresist and then etching that pattern into an amorphous carbon layer. Sidewall spacers are then formed on the sidewalls of the amorphous carbon. The amorphous carbon is removed, leaving behind the sidewall spacers, which define the first mask pattern. A bottom anti-reflective coating (BARC) is then deposited around the spacers to form a planar surface and a photoresist layer is formed over the BARC. The photoresist is next patterned by conventional photolithography to form the second pattern, which is then is transferred to the BARC. The combined pattern made out by the first pattern and the second pattern is transferred to an underlying amorphous silicon layer and the pattern is subjected to a carbon strip to remove BARC and photoresist material. The combined pattern is then transferred to the silicon oxide layer and then to an amorphous carbon mask layer. The combined mask pattern, having features of difference sizes, is then etched into the underlying substrate through the amorphous carbon hard mask layer.