Abstract:
According to an embodiment, a solid-state imaging device includes: an imaging device including an imaging area including a plurality of pixel blocks each of which includes a plurality of pixels; an image formation lens forming an image on an image formation plane by using light from a subject; an aperture unit including a plurality of aperture elements provided to associate with the plurality of pixel blocks, each of the aperture elements having an aperture portion and a shield portion, light from the image formation lens being filtered by each aperture element; a microlens array including a plurality of microlenses provided to associate with the plurality of aperture elements, each of the microlenses forming an image in the imaging area by using light filtered by an associated aperture element; and a signal processing circuit configured to process a signal of an image taken in the imaging area and estimates a distance to the subject.
Abstract:
An image sensor includes a semiconductor substrate; first pixels laid out above cavities provided within the semiconductor substrate, the first pixels converting thermal energy generated by incident light into an electric signal; supporting parts connected between the first pixels and the semiconductor substrate, the supporting parts supporting the first pixels above the cavities; and second pixels fixedly provided on the semiconductor substrate without via the cavities, wherein a plurality of the first pixels and a plurality of the second pixels are laid out two-dimensionally to form a pixel region, and each of the second pixels is adjacent to the first pixels.
Abstract:
A MEMS apparatus includes a MEMS unit formed on a semiconductor substrate and a cover provided with a pore and serving to seal the MEMS unit. The pore is sealed with a sealing material shaped in a sphere or a hemisphere.
Abstract:
It is made possible to provide a highly integrated, thin apparatus can be obtained, even if the apparatus contains MEMS devices and semiconductor devices. A semiconductor apparatus includes: a first chip comprising a MEMS device formed therein; a second chip comprising a semiconductor device formed therein; and an adhesive layer bonding a side face of the first chip to a side face of the second chip, and having a lower Young's modulus than the material of the first and second chips.
Abstract:
A sensor device for detecting a positional relationship between a first member and a second member, includes a first charge-holding electrode provided on a surface of the first member and holding a charge, a second charge-holding electrode provided on the surface of the first member and holding a charge differing from the charge held by the first charge-holding electrode, a first charge-induced electrode provided on a surface of the second member, the first charge-induced electrode having a charge induced therein in accordance with the charge held by the first charge-holding electrode, when the first charge-holding electrode approaches the first charge-induced electrode, a second charge-induced electrode provided on the surface of the second member, the second charge-induced electrode having a charge induced therein in accordance with the charge held by the second charge-holding electrode, when the second charge-holding electrode approaches the second charge-induced electrode.
Abstract:
A solid-state image pickup device has a photoelectric conversion element that converts light incident from a first surface of a substrate into a signal charge and accumulates the signal charge, a transistor that is formed on a second surface side opposite to the first surface of the substrate and reads out the signal charge accumulated by the photoelectric conversion element, a supporting substrate stuck to the second surface of the substrate, and an antireflection coating formed on the first surface of the substrate, wherein the first surface of the substrate includes a curved surface or an inclined surface forming a prescribed angle to the second surface.
Abstract:
There is provided a single-chip color solid-state imager of a backside illumination type having high sensitivity and low noise that facilitates the miniaturization of a pixel size. A pixel readout circuit is selectively disposed on a part of pixels of a readout block consisting of a plurality of pixels that share the pixel readout circuit.
Abstract:
It is made possible to provide a highly integrated, thin apparatus can be obtained, even if the apparatus contains MEMS devices and semiconductor devices. A semiconductor apparatus includes: a first chip comprising a MEMS device formed therein; a second chip comprising a semiconductor device formed therein; and an adhesive layer bonding a side face of the first chip to a side face of the second chip, and having a lower Young's modulus than the material of the first and second chips.
Abstract:
A cell metamorphosing device includes micro dishes which serves as diaphragms and hold a mixed medium containing harmful cells and nano-scale particles, an AC voltage supply, a heater and an inductor. The AC voltage supply faces with the micro dishes 2 with a space, and applies a bias to the micro dishes 2, so that the nano-scale particles are bombarded onto the harmful cells and destroy them.
Abstract:
An infrared image sensor encompasses (a) a base body, (b) a plurality of signal lines disposed on the base body, (c) a plurality of address lines intersecting the signal lines, (d) a plurality of detector portions provided in the cross region of the signal lines and the address lines, each of the detector portions being connected between the corresponding signal line and the address line, each of the detector portions is configured to detect infrared-ray, (e) a plurality of supporting beams supporting each of the detector portions above the base body, and (f) a plurality of contactors configured to contact each of the detector portions with the base body thermally so as to transport thermal energy to be accumulated in each of the detector portions toward the base body.