摘要:
Embodiments of an enhanced Node B (eNB) and method for precoding with reduced quantization error are generally described herein. In some embodiments, first and second precoding-matrix indicator (PMI) reports may be received on an uplink channel and a single subband precoder matrix may be interpolated from precoding matrices indicated by both the PMI reports. Symbols for multiple-input multiple output (MIMO) beamforming may be precoded using the interpolated precoder matrix computed for single subband for a multiple user (MU)-MIMO downlink orthogonal frequency division multiple access (OFDMA) transmission. In some embodiments, each of the first and second PMI reports includes a PMI associated with a same subband that jointly describes a recommended precoder.
摘要:
Embodiments of the present disclosure describe method, apparatus, and system configurations that implement or otherwise use a codebook designed for antennas configured in a circular array. A method includes receiving, by user equipment (UE) from an enhanced node B (eNB) station of a wireless communication network, a Channel State Information Reference Signal (CSI-RS) for the UE to perform channel measurements of multiple antennas of the eNB station, wherein the multiple antennas are configured in one or more circular arrays, performing, by the UE, channel measurements of the multiple antennas of the eNB station using the received CSI-RS, and determining, by the UE, a code word based on the channel measurements, the code word being stored in a codebook designed for a circular antenna array. Other embodiments may be described and/or claimed.
摘要:
An evolved Node B (eNB) in a 3GPP LTE-based network receives Channel State Information-Reference Signal (CSI-RS) from a User Equipment (UE) that is configured with Precoder Matrix Indictor (PMI) disabled. A channel is estimated between the eNB and the UE for link adaptation in Transmission Mode 9 (TM9) based on CSI-RS by the UE and SRS by the eNB. CQI is calculated at UE such that if a number of CSI-RS antenna ports equals one, TM9 transmission from the eNB to the UE uses a predetermined single antenna port. If the number of CSI-RS antenna ports equals two, TM9 transmission from the eNB to the UE uses transmit diversity. If the number of CSI-RS antenna ports does not equal one or two, TM9 transmission from the eNB to the UE uses spatial multiplexing based on a rank-1 precoder that is determined from a wideband channel covariance matrix R.
摘要:
Embodiments of an enhanced Node B (eNB) and method for precoding with reduced quantization error are generally described herein. In some embodiments, first and second precoding-matrix indicator (PMI) reports may be received on an uplink channel and a single subband precoder matrix may be interpolated from precoding matrices indicated by both the PMI reports. Symbols for multiple-input multiple output (MIMO) beamforming may be precoded using the interpolated precoder matrix computed for single subband for a multiple user (MU)-MIMO downlink orthogonal frequency division multiple access (OFDMA) transmission. In some embodiments, each of the first and second PMI reports includes a PMI associated with a same subband that jointly describes a recommended precoder.
摘要:
Techniques are described for forming signals for transmission to a receiver. Two transmitters can form resource blocks with different Physical Uplink Control Channel (PUCCH) demodulation reference signal (DMRS) patterns that are orthogonal over time and/or frequency to each other. The transmitters can simultaneously transmit the same resource block but with different DMRS patterns. If a receiver is mounted with two antennas, the receiver can utilize a MIMO receiver to differentiate resource blocks from two transmitters.
摘要:
This disclosure describes systems, and methods related to parallel channel training in communication networks. A first computing device comprising one or more processors and one or more transceiver component may receive a first connection request from a second computing device, and a second connection request from a third computing device. The first computing device may send the first training field to the second computing device based at least in part on the first connection request and sending in parallel, the second training field to the third computing device based at least in part on the second connection request. The first computing device may establish a first spatial channel stream with the second computing device based at least in part on the first training field and a second spatial channel stream with the third computing device based at least in part on the second training field.
摘要:
Technology for mapping an enhanced physical downlink control channel to physical resource blocks in a radio frame is disclosed. One method comprises mapping modulated symbols in the ePDCCH to at least one control channel element. The at least one control channel element can be mapped to resource elements located in a plurality of distributed physical resource blocks in a subframe, wherein each resource block is separated by at least one additional resource block in the subframe. The mapping can also be to resource elements distributed in a single resource block in the subframe, wherein the control channel element is mapped to be distributed in frequency and time relative to other mapped resource elements in the single resource block.
摘要:
Provided are systems for selecting a frequency resource allocation index that allocates a first resource unit (RU) utilized in a narrow bandwidth transmission, setting a second RU in the frequency resource allocation index as non-allocated, and receiving a stream index of a multiple-user multiple-input multiple-output (MU-MIMO) transmission, the stream index including a spatial stream indication for a station (STA) and an indication of a number of high-efficiency long training field (HE-LTF) symbols in a current PLCP Protocol Data Unit (PPDU).
摘要:
Example systems, methods, and devices for mitigating interference in wireless networks are discussed. One example method includes the operations of passing channel frequency offsets of a plurality of LTF symbols on a plurality of subcarriers through a high pass frequency band, encoding the plurality of LTF symbols with a plurality of LTF sequences across frequency, and encoding the LTF symbols in time and/or frequency. Another example includes the operations of receiving a plurality of LTF symbols on a plurality of subcarriers for channel estimation of one or more streams, removing the encoding across time, removing the encoding across frequency, and removing the LTF sequence(s), and passing the modified LTF symbols through a smoothing filter, for example, a low pass filter for removing the interference due to CFOs. Methods, apparatus, and systems described herein can be applied to 802.11ax or any other wireless standard.
摘要:
Embodiments herein relate to wireless communication using combined channel training and physical layer header (SIG) signaling. Devices that comply with the 802.11 ax or High Efficiency WLAN (HEW) standard may generate and transmit packets that include such combined information. The combined information may be beamformed to a receiver device via an OFDM signal, which may be decoded by the receiver device to obtain subsequent data included in the signal. For example, initial training symbols associated with channel training subcarriers in the signal may be detected and used to perform a rough estimate of the channel. The rough estimate may thereafter be refined using data symbols detected from adjacent data subcarriers using the channel training symbols. In this way, data subcarriers may also be used to determine a channel response along with channel training subcarriers. Channel training information may be transmitted with data, such as user-specific information, in a single symbol.