摘要:
A split gate NAND flash memory structure is formed on a semiconductor substrate of a first conductivity type. The NAND structure comprises a first region of a second conductivity type in the substrate with a second region of the second conductivity type in the substrate, spaced apart from the first region. A continuous first channel region is defined between the first region and the second region. A plurality of floating gates are spaced apart from one another with each positioned over a separate portion of the channel region. A plurality of control gates are provided with each associated with and adjacent to a floating gate. Each control gate has two portions: a first portion over a portion of the channel region and a second portion over the associated floating gate and capacitively coupled thereto.
摘要:
A bi-directional read/program non-volatile memory cell and array is capable of achieving high density. Each memory cell has two spaced floating gates for storage of charges thereon. The cell has spaced apart source/drain regions with a channel therebetween, with the channel having three portions. One of the floating gate is over a first portion; another floating gate is over a second portion, and a gate electrode controls the conduction of the channel in the third portion between the first and second portions. A control gate is connected to each of the source/drain regions, and is also capacitively coupled to the floating gate. The cell programs by hot channel electron injection, and erases by Fowler-Nordheim tunneling of electrons from the floating gate to the gate electrode. Bi-directional read permits the cell to be programmed to store bits, with one bit in each floating gate.
摘要:
A differential sensing content addressable memory cell without any word lines connected to the cells in the same row comprises a first bit line for supplying a first bit. A first storage element has a first phase change resistor for storing a first stored bit, which is connected in series with a first diode. The first storage element is connected to the first bit line. A second bit line supplies a second bit, with the second bit being an inverse of the first bit. A second storage element has a second phase change resistor for storing a second stored bit, which is connected in series with a second diode. The second storage element is connected to the second bit line. A match line is connected to the first and second storage elements for indicating whether a match occurred between the first bit and the first stored bit, and between the second bit and the second stored bit
摘要:
A stacked gate nonvolatile memory floating gate device has a control gate. Programming of the cell in the array is accomplished by hot channel electron injection from the drain to the floating gate. Erasure occurs by Fowler-Nordheim tunneling of electrons from the floating gate to the control gate. Finally, to increase the density, each cell can be made in a trench.
摘要:
An isolation-less, contact-less nonvolatile memory array has a plurality of memory cells each with a floating gate for the storage of charges thereon, arranged in a plurality of rows and columns. Each memory cell can be of a number of different types. All the bit lines and source lines of the various embodiments are buried and are contact-less. In a first embodiment, each cell can be represented by a stacked gate floating gate transistor coupled to a separate assist transistor. The entire array can be planar; or in a preferred embodiment each of the floating gate transistors is in a trench; or each of the assist transistors is in a trench. In a second embodiment, each cell can be represented by a stacked gate floating gate transistor with the transistor in a trench. In a third embodiment, each cell can be represented by two stacked gate floating gate transistors coupled to a separate assist transistor, positioned between the two stacked gate floating gate transistors. The entire array can be planar; or in a preferred embodiment each of the floating gate transistors is in a trench; or each of the assist transistors is in a trench. Novel methods to manufacture the arrays and methods to program, erase, and read each of these embodiments of the memory cells is disclosed.
摘要:
A non-volatile memory cell has a single crystalline semiconductive material, such as single crystalline silicon, of a first conductivity type. A first and a second region each of a second conductivity type, different from the first conductivity type, spaced apart from one another is formed in the semiconductive material. A channel region, having a first portion, and a second portion, connects the first and second regions for the conduction of charges. A dielectric is on the channel region. A floating gate, which can be conductive or non-conductive, is on the dielectric, spaced apart from the first portion of the channel region. The first portion of the channel region is adjacent to the first region, with the first floating gate having generally a triangular shape. The floating gate is formed in a cavity. A gate electrode is capacitively coupled to the first floating gate, and is spaced apart from the second portion of the channel region. The second portion of the channel region is between the first portion and the second region. A bi-directional non-volatile memory cell has two floating gates each formed in a cavity. A method of making the non-volatile memory cell and the array are also disclosed.
摘要:
An array of floating gate memory cells, and a method of making same, where each pair of memory cells includes a pair of trenches formed into a surface of a semiconductor substrate, with a strip of the substrate disposed therebetween, a source region formed in the substrate strip, a pair of drain regions, a pair of channel regions each extending between the source region and one of the drain regions, a pair of floating gates each disposed in one of the trenches, and a pair of control gates. Each channel region has a first portion disposed in the substrate strip and extending along one of the trenches, a second portion extending underneath the one trench, a third portion extending along the one trench, and a fourth portion extending along the substrate surface and under one of the control gates.
摘要:
A self aligned method of forming a semiconductor memory array of floating gate memory cells in a semiconductor substrate has a plurality of spaced apart isolation regions on the substrate substantially parallel to one another. An active region is between each pair of adjacent isolation regions. The active and isolation regions are formed in parallel and in the column direction. In the row direction, strips of spaced apart silicon nitride are formed. A source line plug is formed between adjacent pairs of silicon nitride and is in contact with a first region in the active regions, and the isolation regions. The strips of silicon nitride are removed and isotropically etched. In addition, the materials beneath the silicon nitride are also isotropically etched. Polysilicon spacers are then formed in the row direction parallel to the source line plug and adjacent to the floating gates. A second region is formed between adjacent, spaced apart, control gates. A bit line is formed in the bit line direction contacting the second region in the space between the control gates.
摘要:
A self aligned method of forming a semiconductor memory array of floating gate memory cells in a semiconductor substrate has a plurality of spaced apart isolation regions on the substrate substantially parallel to one another. An active region is between each pair of adjacent isolation regions. The active and isolation regions are formed in parallel and in the column direction. In the row direction, strips of spaced apart silicon nitride are formed. A source line plug is formed between adjacent pairs of silicon nitride and is in contact with a first region in the active regions, and the isolation regions. The strips of silicon nitride are removed and isotropically etched. In addition, the materials beneath the silicon nitride are also isotropically etched. Polysilicon spacers are then formed in the row direction parallel to the source line plug and adjacent to the floating gates to form connected control gates. A second region is formed between adjacent, spaced apart, control gates. A bit line is formed in the bit line direction contacting the second region in the space between the control gates.
摘要:
A system for improving the management and usage of blocks based on intrinsic endurance may be used to improve memory usage for flash memory, such as a memory card. The overall card endurance may be extended by cycling blocks with higher intrinsic endurance over the lowest endurance target of the worst block. This may be accomplished by managing blocks with different intrinsic endurance values internally or by partitioning the blocks with different intrinsic endurance values externally for different usage.