摘要:
A transistor includes a first semiconductor layer. A second semiconductor layer is located on the first semiconductor layer. A portion of the second semiconductor layer is removed to expose a first portion of the first semiconductor layer and to provide vertical sidewalls of the second semiconductor layer. A gate spacer is located on the second semiconductor layer. A gate dielectric includes a first portion located on the first portion of the first semiconductor layer and a second portion adjacent to the vertical sidewalls of the second semiconductor layer. A gate conductor is located on the first portion of the gate dielectric and abuts the gate dielectric second portion. A channel region is located in at least part of the first portion of the first semiconductor layer. Raised source/drain regions are located in the second semiconductor layer. At least part of the raised source/drain regions is located below the gate spacer.
摘要:
A method includes providing an ETSOI wafer having a semiconductor layer having a top surface with at least one gate structure having on sidewalls thereof a layer of dielectric material. A portion of the layer of dielectric material extends away from the gate structure on the surface of the semiconductor layer. The method further includes faulting a raised S/D on the semiconductor layer adjacent to the portion of the layer of dielectric material, removing the portion of the layer of dielectric material to expose an underlying portion of the surface of the semiconductor layer and applying a layer of glass containing a dopant to cover at least the exposed portion of the surface of the semiconductor layer. The method further includes diffusing the dopant through the exposed portion of the surface of the semiconductor layer to form a source extension region and a drain extension region.
摘要:
Transistor devices and methods of their fabrication are disclosed. In one method, a dummy gate structure is formed on a substrate. Bottom portions of the dummy gate structure are undercut. In addition, stair-shaped, raised source and drain regions are formed on the substrate and within at least one undercut formed by the undercutting. The dummy gate structure is removed and a replacement gate is formed on the substrate.
摘要:
Doped semiconductor back gate regions self-aligned to active regions are formed by first patterning a top semiconductor layer and a buried insulator layer to form stacks of a buried insulator portion and a semiconductor portion. Oxygen is implanted into an underlying semiconductor layer at an angle so that oxygen-implanted regions are formed in areas that are not shaded by the stack or masking structures thereupon. The oxygen implanted portions are converted into deep trench isolation structures that are self-aligned to sidewalls of the active regions, which are the semiconductor portions in the stacks. Dopant ions are implanted into the portions of the underlying semiconductor layer between the deep trench isolation structures to form doped semiconductor back gate regions. A shallow trench isolation structure is formed on the deep trench isolation structures and between the stacks.
摘要:
A method includes providing a silicon-on-insulator wafer (e.g., an ETSOI wafer); forming a sacrificial gate structure that overlies a sacrificial insulator layer; forming raised source/drains adjacent to the sacrificial gate structure; depositing a layer that covers the raised source/drains and that surrounds the sacrificial gate structure; and removing the sacrificial gate structure leaving an opening that extends to the sacrificial insulator layer. The method further includes widening the opening so as to expose some of the raised source/drains, removing the sacrificial insulator layer and forming a spacer layer on sidewalls of the opening, the spacer layer covering only an upper portion of the exposed raised source/drains, and depositing a layer of gate dielectric material within the opening. A gate conductor is deposited within the opening.
摘要:
Contact via holes are etched in a dielectric material layer overlying a semiconductor layer to expose the topmost surface of the semiconductor layer. The contact via holes are extended into the semiconductor material layer by continuing to etch the semiconductor layer so that a trench having semiconductor sidewalls is formed in the semiconductor material layer. A metal layer is deposited over the dielectric material layer and the sidewalls and bottom surface of the trench. Upon an anneal at an elevated temperature, a metal semiconductor alloy region is formed, which includes a top metal semiconductor alloy portion that includes a cavity therein and a bottom metal semiconductor alloy portion that underlies the cavity and including a horizontal portion. A metal contact via is formed within the cavity so that the top metal semiconductor alloy portion laterally surrounds a bottom portion of a bottom portion of the metal contact via.
摘要:
An apparatus and a method for creating a CMOS with a dual raised source and drain for NMOS and PMOS. The spacers on both stack gates are of equal thickness. In this method, a first insulating layer is formed on the surface. The first region is then masked while the other region has the first layer etched away and has an epitaxial source and drain grown on the region. A second layer is formed to all exposed surfaces. The second region is then masked while the first region is etched away. The epitaxial source and drain is formed on the first region. The second region can also be masked by adding a thin layer of undoped silicon and then oxidize it. Another way to mask the second region is to use a hard mask. Another way to form the second source and drain is to use amorphous material.
摘要:
CMOS transistors are formed incorporating a gate electrode having tensely stressed spacers on the gate sidewalls of an n channel field effect transistor and having compressively stressed spacers on the gate sidewalls of a p channel field effect transistor to provide differentially stressed channels in respective transistors to increase carrier mobility in the respective channels.
摘要:
A semiconductor substrate having an isolation region and method of forming the same. The method includes the steps of providing a substrate having a substrate layer, a buried oxide (BOX), a silicon on insulator (SOI) layer, a pad oxide layer, and a pad nitride layer, forming a shallow trench region, etching the pad oxide layer to form ears and etching the BOX layer to form undercuts, depositing a liner on the shallow trench region, depositing a soft mask over the surface of the shallow trench region, filling the shallow trench region, etching the soft mask so that it is recessed to the top of the BOX layer, etching the liner off certain regions, removing the soft mask, and filling and polishing the shallow trench region. The liner prevents shorting of the semiconductor device when the contacts are misaligned.
摘要:
A mandrel having vertical planar surfaces is formed on a single crystalline semiconductor layer. An epitaxial semiconductor layer is formed on the single crystalline semiconductor layer by selective epitaxy. A first spacer is formed around an upper portion of the mandrel. The epitaxial semiconductor layer is vertically recessed employing the first spacers as an etch mask. A second spacer is formed on sidewalls of the first spacer and vertical portions of the epitaxial semiconductor layer. Horizontal bottom portions of the epitaxial semiconductor layer are etched from underneath the vertical portions of the epitaxial semiconductor layer to form a suspended ring-shaped semiconductor fin that is attached to the mandrel. A center portion of the mandrel is etched employing a patterned mask layer that covers two end portions of the mandrel. A suspended semiconductor fin is provided, which is suspended by a pair of support structures.