Abstract:
Memory devices, system, and methods for operating the same are provided. The memory device can comprise a non-volatile memory array and control circuitry. The control circuitry can be configured to store a value corresponding to a number of activate commands received at the memory device, update the value in response to receiving an activate command received from a host device, and trigger, in response to the value exceeding a predetermined threshold, a remedial action performed by the memory device. The control circuitry can be further configured to store a second value corresponding to a number of refresh operations performed by the memory device, update the second value in response to performing a refresh operation, and trigger, in response to the value exceeding a second predetermined threshold, a second remedial action performed by the memory device.
Abstract:
Memory devices, systems including memory devices, and methods of operating memory devices and systems are provided, in which at least a subset of a non-volatile memory array is configured to behave as read-only memory by not implementing erase or write commands. In one embodiment of the present technology, a memory device is provided, comprising a non-volatile memory array, and circuitry configured to store one or more addresses of the non-volatile memory array, to compare an address of a received command to the one or more addresses, and at least in part based on the comparison, determine not to implement the received command. The circuitry can be further configured to return an error message after determining not to implement the received command.
Abstract:
The present disclosure includes apparatuses and methods related to data movement operations in non-volatile memory. An example apparatus can comprise an array of non-volatile memory cells including a plurality of sections each with a plurality of rows and a controller configured to move data stored in a first portion of the array from a first row of a first section to a second row of the first section and move data stored in a second portion of the array from a second section to the first to create an open row in the second section in response to data from a particular number of portions of memory cells in the first section being moved within the first section.
Abstract:
Apparatuses and methods for compressing data responsive to a plurality of memory accesses is described. An example compression circuit includes a comparator configured to compare data provided by a group of memory cells associated with a repair address. Each subset of one or more bits of the data is sequentially provided by the group of memory cells responsive to a respective memory access of a plurality of memory accesses. The example compression circuit further including an error bit latch coupled to the comparison circuit. The error bit latch configured to, responsive to an output received from the comparison circuit indicating an error, compress the data to an error bit by setting the error bit to an error detected state and latching the error bit having the error detected state.
Abstract:
Signaling indicative of a command to initialize a plurality of memory dies of a memory device can be received by the memory device. Initialization of a memory die of the memory device can be delayed, at the memory die and based at least in part on fuse states of an array of fuses of the memory die, by an amount of time relative to receipt of the signaling by the memory device. Delaying initialization of memory dies of the memory device in a staggered or asynchronous manner can evenly distribute power consumption of the memory dies so that the likelihood of an associated power spike is reduced or eliminated.
Abstract:
An antifuse device, including a gate having a gate dielectric layer; a first doping region connected to a first end of the gate; a second doping region connected to a second end of the gate, the second end being opposite to the first end of the gate; a channel that is disposed under the gate and that connects the first doping region and the second doping region; and an interconnection jumper that electrically connects the first doping region and the second doping region.
Abstract:
Memory devices are disclosed. A device may include a number of memory banks and a number of latch sets, wherein each latch set is associated with a memory bank. The device may also include a fuse array including a number of fuses. The device may further include circuitry configured to read data from a first set of fuses of the number of fuses and broadcast data from the first set of fuses to a first latch set of the number of latch sets. Further, in response to a repair result associated with the first set of fuses being a first state, the circuitry may be configured to read a second set of fuses and broadcast the second set of fuses to the first latch set. Methods of operating a memory device, microelectronic devices, semiconductor devices, and electronic systems are also disclosed.
Abstract:
Memory devices, systems including memory devices, and methods of operating memory devices and systems are provided, in which at least a subset of a non-volatile memory array is configured to behave as a volatile memory by erasing or degrading data in the event of a changed power condition such as a power-loss event, a power-off event, or a power-on event. In one embodiment of the present technology, a memory device is provided, comprising a non-volatile memory array, and circuitry configured to store one or more addresses of the non-volatile memory array, to detect a changed power condition of the memory device, and to erase or degrade data at the one or more addresses in response to detecting the changed power condition.
Abstract:
First signaling indicative of instructions to enter a self-refresh (SREF) mode can be received concurrently by a plurality of memory dies. Responsive to a memory die of the plurality of memory dies entering the SREF mode, self-refreshing of memory banks of the memory die can be delayed, at the memory die and based on fuse states of an array of fuses of the memory die, an amount of time relative to receipt of the signaling by the memory die. Delaying self-refreshing of memory banks of memory dies in a staggered, or asynchronous, manner can evenly distribute power consumption of the memory dies so that the likelihood of an associated power spike is reduced or eliminated.
Abstract:
Embodiments of the disclosure are drawn to apparatuses, systems, methods for performing operations associated with machine learning. Machine learning operations may include processing a data set, training a machine learning algorithm, and applying a trained algorithm to a data set. Some of the machine learning operations, such as pattern matching operations, may be performed within a memory device.