摘要:
The present invention provides a method and apparatus for achieving conformal step coverage of one or more materials on a substrate using sputtered ionized material. A target provides a source of material to be sputtered by a plasma and then ionized by an inductive coil, thereby producing electrons and ions. In one embodiment, one or both of the signals to the substrate and the target are modulated. Preferably, the modulated signal to the substrate includes a negative voltage portion and a zero voltage portion.
摘要:
A method and apparatus that operates at a high pressure of at least one torr for improving sidewall coverage within trenches and vias in a substrate. The apparatus comprises a chamber enclosing a target and a pedestal, a process gas that provides a process gas in the chamber, a pump for maintaining the high pressure of at least about one torr in the chamber and a power source coupled to the target. Additionally, the distance between the target and the substrate is set to ensure that collisions between the sputtered particles and the plasma occur in the trenches and vias on the substrate. The method comprises the steps of providing a process gas into the chamber such that the gas pressure is at least about one torr, generating a plasma from the process gas, and sputtering material from the target.
摘要:
Embodiments include devices and methods for sputtering material onto a workpiece in a chamber which includes a plasma generation area and a target. A coil is positioned to inductively couple energy into the plasma generation area to generate a plasma. A body is positioned between the workpiece and the target to prevent an amount of target material from being sputtered onto the workpiece. The body prevents an amount of target material from being sputtered onto the workpiece. The body may act as a dark space shield and inhibit plasma formation between the body and the target. The body may also act as a physical shield to block sputtered material from accumulating on the workpiece.
摘要:
In a plasma generating apparatus, RF energy applied to a coil positioned to sputter material onto a workpiece, is modulated to control the biasing of the coil. As a consequence, control of coil sputtering may be improved such that the uniformity of deposition may also be improved.
摘要:
The present invention provides a method and apparatus for achieving conformal step coverage of one or more materials on a substrate using sputtered ionized material. A plasma is struck and maintained in a processing region by coupling energy into one or more gases. A target disposed in the processing region provides a source of material to be sputtered and then ionized in the plasma environment. During deposition of material onto the substrate, the plasma density is modulated by varying the energy supplied to the plasma. During a period of plasma decay, a bias to a substrate support member is increased to a relatively higher power to periodically enhance the attraction of positively charged particles to the substrate during the afterglow period of the plasma. In one embodiment, a bias to the target is also modulated.
摘要:
A substrate processing method practiced in a plasma sputter reactor including an RF coil and two or more coaxial electromagnets, at least two of which are wound at different radii. After a barrier layer, for example, of tantalum is sputter deposited into a via hole, the RF coil is powered to cause argon sputter etching of the barrier layer and the current to the electromagnets are adjusted to steer the argon ions, for example to eliminate sidewall asymmetry. For example, the two electromagnets are powered with unequal currents of opposite polarities or a third electromagnet wrapped at a different height is powered. In one embodiment, the steering straightens the trajectories near the wafer edge. In another embodiment, the etching is divided into two steps in which the steering inclines the trajectories at opposite angles. The invention may also be applied to other materials, such as copper.
摘要:
A fabrication method and a product for the deposition of a conductive barrier or other liner layer in a vertical electrical interconnect structure. One embodiment includes within a a hole through a dielectric layer a barrier layer of RuTaN, an adhesion layer of RuTa, and a copper seed layer forming a liner for electroplating of copper. The ruthenium content is preferably greater than 50 at % and more preferably at least 80 at % but less than 95 at %. The barrier and adhesion layers may both be sputter deposited. Other platinum-group elements substitute for the ruthenium and other refractory metals substitute for the tantalum. Aluminum alloying into RuTa when annealed presents a moisture barrier. Copper contacts include different alloying fractions of RuTa to shift the work function to the doping type.
摘要:
A sputtering coil for a plasma chamber in a semiconductor fabrication system is provided. The sputtering coil couples energy into a plasma and also provides a source of sputtering material to be sputtered onto a workpiece from the coil to supplement material being sputtered from a target onto the workpiece. Alternatively a plurality of coils may be provided, one primarily for coupling energy into the plasma and the other primarily for providing a supplemental source of sputtering material to be sputtered on the workpiece.
摘要:
A magnetron system for a sputtering target having an annular vault facing the wafer to be coated and having inner and outer sidewalls and a roof. A small magnetron is positioned over the roof. A first magnet assembly having a first magnet polarity along the target axis is positioned behind the inner sidewall. A second magnet assembly having an opposed second opposed magnetic polarity is disposed in back of the outer sidewall and has magnetic strength much greater than the first magnet assembly but its strength is asymmetrically distributed about the target axis. The second magnet assembly and the roof assembly are rotated together about the target axis. The rotating asymmetric sidewall magnet assembly may also be used with a hollow-cathode target, with or without a roof magnetron.