Abstract:
A method includes forming a first spacer structure on a dummy gate of a semiconductor device and forming a sacrificial spacer on the first spacer structure. The method also includes etching a structure of the semiconductor device to create an opening, removing the sacrificial spacer via the opening, and depositing a material to close to define a gap.
Abstract:
Semiconductor devices employing Field Effect Transistors (FETs) with multiple channel structures without shallow trench isolation (STI) void-induced electrical shorts are disclosed. In one aspect, a semiconductor device is provided that includes a substrate. The semiconductor device includes channel structures disposed over the substrate, the channel structures corresponding to a FET. An STI trench is formed between each corresponding pair of channel structures. Each STI trench includes a bottom region filled with a lower quality oxide, and a top region filled with a higher quality oxide. The lower quality oxide is susceptible to void formation in the bottom region during particular fabrication steps of the semiconductor device. However, the higher quality oxide is not susceptible to void formation. Thus, the higher quality oxide does not include voids with which a gate may electrically couple to other active components, thus preventing STI void-induced electrical shorts in the semiconductor device.
Abstract:
Fin Field Effect Transistor (FET) (FinFET) complementary metal oxide semiconductor (CMOS) circuits with single and double diffusion breaks for increased performance are disclosed. In one aspect, a FinFET CMOS circuit employing single and double diffusion breaks includes a P-type FinFET that includes a first Fin formed from a semiconductor substrate and corresponding to a P-type diffusion region. The FinFET CMOS circuit includes an N-type FinFET that includes a second Fin formed from the semiconductor substrate and corresponding to an N-type diffusion region. To electrically isolate the P-type FinFET, first and second single diffusion break (SDB) isolation structures are formed in the first Fin on either side of a gate of the P-type FinFET. To electrically isolate the N-type FinFET, first and second double diffusion break (DDB) isolation structures are formed in the second Fin on either side of a gate of the N-type FinFET.
Abstract:
An integrated circuit includes a FinFET and a nanostructure FET. The integrated circuit includes a bulk substrate. The integrated circuit also includes a fin field effect transistor (FinFET) coupled to the bulk substrate. The FinFET includes a first source region, a first drain region, and a fin extending between the first source region and the first drain region. The integrated circuit also includes a nanostructure FET coupled to the bulk substrate. The nanostructure FET includes a second source region, a second drain region, and a stack of at least two nanostructures extending between the second source region and the second drain region.
Abstract:
Nanowire metal-oxide semiconductor (MOS) Field-Effect Transistors (FETs) (MOSFETs) employing a nanowire channel structure having rounded nanowire structures is disclosed. To reduce the distance between adjacent nanowire structures to reduce parasitic capacitance while providing sufficient gate control of the channel, the nanowire channel structure employs rounded nanowire structures. For example, the rounded nanowire structures provide for a decreased height from a center area of the rounded nanowire structures to end areas of the rounded nanowire structures. Gate material is disposed around rounded ends of the rounded nanowire structures to extend into a portion of separation areas between adjacent nanowire structures. The gate material extends in the separation areas between adjacent nanowire structures sufficient to create a fringing field to the channel where gate material is not adjacently disposed, to provide strong gate control of the channel even though gate material does not completely surround the rounded nanowire structures.
Abstract:
A method for scaling voltages provided to different modules of a system-on-chip (SOC) includes receiving, at an energy-performance engine of the SOC, a first indication of usage history for a first module of the SOC and a second indication of usage history for a second module of the SOC. The method includes receiving a battery life indication that indicates a remaining battery life for a battery of the SOC. The method also includes adjusting a first supply voltage provided to the first module of the SOC based on the first indication, the second indication, and the battery life indication. The method further includes adjusting a second supply voltage provided to the second module of the SOC based on the first indication, the second indication, and the battery life indication.
Abstract:
A method for designing a system-on-chip (SOC) for a wireless device includes receiving, at a design processor, first usage conditions for a first module of the SOC and second usage conditions for a second module of the SOC. The method further includes determining design parameters for the SOC. The design parameters are determined based on the first usage conditions and the second usage conditions.
Abstract:
A semiconductor device includes a gate and a first active contact adjacent to the gate. Such a device further includes a first stacked contact electrically coupled to the first active contact, including a first isolation layer on sidewalls electrically isolating the first stacked contact from the gate. The device also includes a first via electrically coupled to the gate and landing on the first stacked contact. The first via electrically couples the first stacked contact and the first active contact to the gate to ground the gate.
Abstract:
Static random access memory (SRAM) bit cells with wordline landing pads split across boundary edges of the SRAM bit cells are disclosed. In one aspect, an SRAM bit cell is disclosed employing write wordline in second metal layer, first read wordline in third metal layer, and second read wordline in fourth metal layer. Employing wordlines in separate metal layers allows wordlines to have wider widths, which decrease wordline resistance, decrease access time, and increase performance of SRAM bit cell. To employ wordlines in separate metal layers, multiple tracks in first metal layer are employed. To couple read wordlines to the tracks to communicate with SRAM bit cell transistors, landing pads are disposed on corresponding tracks inside and outside of a boundary edge of the SRAM bit cell. Landing pads corresponding to the write wordline are placed on corresponding tracks within the boundary edge of the SRAM bit cell.
Abstract:
A method for designing a system-on-chip (SOC) for a wireless device includes receiving, at a design processor, first usage conditions for a first module of the SOC and second usage conditions for a second module of the SOC. The method further includes determining design parameters for the SOC. The design parameters are based on the first usage conditions and the second usage conditions.