摘要:
A system and method for encapsulating an organic light-emitting diode (OLED) device by enabling a substrate and a plurality of masks to be efficiently received into a vacuum processing environment, transferred between one or more process chambers for the deposition of encapsulating layers, and removed from the processing system. A method of encapsulating an organic light-emitting diode (OLED) device includes positioning one or more masks over a substrate to deposit encapsulating layers on an OLED device disposed on the substrate. A processing system for encapsulating an organic light-emitting diode (OLED) device includes one or more transfer chambers, one or more load lock chambers coupled to each transfer chamber and operable to receive a mask into a vacuum environment, and one or more process chambers coupled to each transfer chamber and operable to deposit an encapsulating layer on a substrate.
摘要:
The present invention generally relates to methods and apparatus for handling of substrates in a thermal treatment chamber. In one embodiment, an apparatus is provided. The apparatus includes a chamber body having sidewalls, a substrate support assembly disposed in the chamber body, the substrate support assembly movable in a first direction within the chamber body, and two or more support fingers coupled to the sidewalls, the two or more support fingers being movable in a second direction within the chamber body, the second direction being transverse to the first direction.
摘要:
A method and apparatus for sealing an opening of a processing chamber are provided. In one embodiment, the invention generally provides a closure member integrated within a wall of a process chamber for sealing an opening within the wall of the chamber. In another embodiment, the invention provides a closure member configured to seal an opening in the wall of a processing chamber from the inside of the chamber.
摘要:
Embodiments of a gas diffuser plate for distributing gas in a processing chamber are provided. The gas distribution plate includes a diffuser plate having an upstream side and a downstream side, and a plurality of gas passages passing between the upstream and downstream sides of the diffuser plate. The gas passages include hollow cathode cavities at the downstream side to enhance plasma ionization. The depths, the diameters, the surface area and density of hollow cathode cavities of the gas passages that extend to the downstream end can be gradually increased from the center to the edge of the diffuser plate to improve the film thickness and property uniformity across the substrate. The increasing diameters, depths and surface areas from the center to the edge of the diffuser plate can be created by bending the diffuser plate toward downstream side, followed by machining out the convex downstream side. Bending the diffuser plate can be accomplished by a thermal process or a vacuum process. The increasing diameters, depths and surface areas from the center to the edge of the diffuser plate can also be created computer numerically controlled machining. Diffuser plates with gradually increasing diameters, depths and surface areas of the hollow cathode cavities from the center to the edge of the diffuser plate have been shown to produce improved uniformities of film thickness and film properties.
摘要:
A method of testing electronic devices on substrates is described. The method includes placing a configurable prober over a first substrate, testing the first substrate, re-configuring the configurable prober, placing the configurable prober over a second substrate, and testing the second substrate.
摘要:
A non-polygon shaped, multi-piece chamber is provided. A non-polygon shaped, multi-piece chamber may include (1) a central piece having a first side and a second side, (2) a first side piece adapted to couple with the first side of the central piece, and (3) a second side piece adapted to couple with the second side of the central piece. The central piece, the first side piece, and the second side piece form a cylindrical overall shape when coupled together. Numerous other aspects are provided.
摘要:
Embodiments of the invention include a load lock chamber, a processing system having a load lock chamber and a method for transferring substrates between atmospheric and vacuum environments. In one embodiment, the method includes maintaining a processed substrate within a transfer cavity formed in a chamber body for two venting cycles. In another embodiment, the method includes transferring a substrate from a transfer cavity to a heating cavity formed in the chamber body, and heating the substrate in the heating cavity. In another embodiment, a load lock chamber includes a chamber body having substrate support disposed in a transfer cavity. The substrate support is movable between a first elevation and a second elevation. A plurality of grooves are formed in at least one of a ceiling or floor of the transfer cavity and configured to receive at least a portion of the substrate support when located in the second elevation.
摘要:
Embodiments disclosed herein generally relate to methods for sealing a processing chamber with a slit valve door. The door initially raises from a position below the opening for the processing chamber to a raised position. The door then expands until an O-ring that is on the door just touches the sealing surface. Then, the door expands again to compress the O-ring against the sealing surface. The door expands by flowing a gas into the interior volume of the door. By controlling the pressure buildup within the door, the speed with which the door expands is controlled to ensure that the door gently contacts the sealing surface and then compresses against the sealing surface. Thus, the door may be prevented from contacting the sealing surface with too great a force that may jolt or shake the processing chamber and produce undesired particles that may contaminate the process.
摘要:
Methods and systems for improving the alignment between a previously formed feature and a subsequently formed feature are provided. An exemplary method can include laser scribing a workpiece (104, 550) having a previously formed first feature. The exemplary method includes imaging the workpiece (104, 550) with an imaging device (320, 420, 554, 640) so as to capture a plurality of positions of the first feature on the workpiece (104, 550) relative to the laser-scribing device (100). The exemplary method further includes using the captured positions to align output from the laser-scribing device (100) in order to form a second feature on the workpiece (104, 550) at a controlled distance from the first feature.