摘要:
A system and method for encapsulating an organic light-emitting diode (OLED) device by enabling a substrate and a plurality of masks to be efficiently received into a vacuum processing environment, transferred between one or more process chambers for the deposition of encapsulating layers, and removed from the processing system. A method of encapsulating an organic light-emitting diode (OLED) device includes positioning one or more masks over a substrate to deposit encapsulating layers on an OLED device disposed on the substrate. A processing system for encapsulating an organic light-emitting diode (OLED) device includes one or more transfer chambers, one or more load lock chambers coupled to each transfer chamber and operable to receive a mask into a vacuum environment, and one or more process chambers coupled to each transfer chamber and operable to deposit an encapsulating layer on a substrate.
摘要:
A system and method for encapsulating an organic light-emitting diode (OLED) device by enabling a substrate and a plurality of masks to be efficiently received into a vacuum processing environment, transferred between one or more process chambers for the deposition of encapsulating layers, and removed from the processing system. A method of encapsulating an organic light-emitting diode (OLED) device includes positioning one or more masks over a substrate to deposit encapsulating layers on an OLED device disposed on the substrate. A processing system for encapsulating an organic light-emitting diode (OLED) device includes one or more transfer chambers, one or more load lock chambers coupled to each transfer chamber and operable to receive a mask into a vacuum environment, and one or more process chambers coupled to each transfer chamber and operable to deposit an encapsulating layer on a substrate.
摘要:
The present invention generally relates to a vertical CVD system having a processing chamber that is capable of processing multiple substrates. The multiple substrates are disposed on opposite sides of the processing source within the processing chamber, yet the processing environments are not isolated from each other. The processing source is a horizontally centered vertical plasma generator that permits multiple substrates to be processed simultaneously on either side of the plasma generator, yet independent of each other. The system is arranged as a twin system whereby two identical processing lines, each with their own processing chamber, are arranged adjacent to each other. Multiple robots are used to load and unload the substrates from the processing system. Each robot can access both processing lines within the system.
摘要:
A method and apparatus for providing an electrically symmetrical ground or return path for electrical current between two electrodes is described. The apparatus includes at least on radio frequency (RF) device coupled to one of the electrodes and between a sidewall and/or a bottom of a processing chamber. The method includes moving one electrode relative to another and realizing a ground return path based on the position of the displaced electrode using one or both of a RF device coupled to a sidewall and the electrode, a RF device coupled to a bottom of the chamber and the electrode, or a combination thereof.
摘要:
The present invention generally comprises a floating slit valve for interfacing with a chamber. A floating slit valve moves or “floats” relative to another object such as a chamber. The slit valve may be coupled between two chambers. When a chamber coupled with the slit valve is heated, the slit valve may also be heated by conduction. As the slit valve is heated, it may thermally expand. When a vacuum is drawn in a chamber, the slit valve may deform due to vacuum deflection. By disposing a low friction material spacer between the chamber and the slit valve, the slit valve may not rub against the chamber during thermal expansion/contraction and/or vacuum deflection and thus, may not generate undesirable particle contaminants. Additionally, slots drilled through the chamber for coupling the slit valve to the chamber may be sized to accommodate thermal expansion/contraction and vacuum deflection of the slit valve.
摘要:
Embodiments disclosed herein relate to a large vacuum chamber body that has been welded together. The chamber body may have a high emissivity coating on at least one surface therein. Due to the large size of the chamber body, the chamber body may be formed by welding several pieces together rather than forging the body from a single piece of metal. The pieces may be welded together at a location spaced from the corner of the body, which may be under the greatest stress during evacuation, to ensure that the weld, which may be the weakest point in the body, does not fail. At least one surface of the chamber body may be coated with a high emissivity coating to aid in heat transfer from incoming, heated substrates. The high emissivity coating may increase substrate throughput by lowering the time that may be needed to reduce the substrate temperature.
摘要:
In certain aspects, a load lock chamber is provided that includes a body having at least one sealing surface wall including a sealing surface. The sealing surface wall has an opening adjacent the sealing surface adapted to input or output a substrate. The body further includes a plurality of side walls. The load lock chamber also includes a top coupled to the body. The top includes one or more openings that divide the top into a first portion and a second portion. The load lock chamber further includes one or more top sealing members adapted to cover each opening of the top. Each top sealing member absorbs a movement of the first portion of the top relative to the second portion of the top. Numerous other aspects are provided.
摘要:
The present invention generally includes a load lock chamber for transferring large area substrates into a vacuum processing chamber. The load lock chamber may have one or more separate, environmentally isolated environments. Each processing environment may have a plurality exhaust ports for drawing a vacuum. The exhaust ports may be located at the corners of the processing environment. When a substrate is inserted into the load lock chamber from the factory interface, the environment may need to be evacuated. Due to the exhaust ports located at the corners of the environment, any particles or contaminants that may be present may be pulled to the closest corner and out of the load lock chamber without being pulled across the substrate. Thus, substrate contamination may be reduced.
摘要:
Embodiments of the invention include a load lock chamber, a processing system having a load lock chamber and a method for transferring substrates between atmospheric and vacuum environments. In one embodiment, the method includes maintaining a processed substrate within a transfer cavity formed in a chamber body for two venting cycles. In another embodiment, the method includes transferring a substrate from a transfer cavity to a heating cavity formed in the chamber body, and heating the substrate in the heating cavity. In another embodiment, a load lock chamber includes a chamber body having substrate support disposed in a transfer cavity. The substrate support is movable between a first elevation and a second elevation. A plurality of grooves are formed in at least one of a ceiling or floor of the transfer cavity and configured to receive at least a portion of the substrate support when located in the second elevation.