Abstract:
An integrated circuit includes a semiconductor substrate with an electrically isolated semiconductor well. An upper trench isolation extends from a front face of the semiconductor well to a depth located a distance from the bottom of the well. Two additional isolating zones are electrically insulated from the semiconductor well and extending inside the semiconductor well in a first direction and vertically from the front face to the bottom of the semiconductor well. At least one hemmed resistive region is bounded by the two additional isolating zones, the upper trench isolation and the bottom of the semiconductor well. Electrical contacts are electrically coupled to the hemmed resistive region.
Abstract:
The array of diodes comprises a matrix plane of diodes arranged according to columns in a first direction and according to rows in a second direction orthogonal to the first direction. The said diodes comprise a cathode region of a first type of conductivity and an anode region of a second type of conductivity, the said cathode and anode regions being superposed and disposed on an insulating layer situated on top of a semiconductor substrate.
Abstract:
Non-volatile memory including rows and columns of memory cells, the columns of memory cells including pairs of twin memory cells including a common selection gate. According to the disclosure, two bitlines are provided per column of memory cells. The adjacent twin memory cells of the same column are not connected to the same bitline while the adjacent non-twin memory cells of the same column are connected to the same bitline.
Abstract:
The array of diodes comprises a matrix plane of diodes arranged according to columns in a first direction and according to rows in a second direction orthogonal to the first direction. The said diodes comprise a cathode region of a first type of conductivity and an anode region of a second type of conductivity, the said cathode and anode regions being superposed and disposed on an insulating layer situated on top of a semiconductor substrate.
Abstract:
The present disclosure relates to a non-volatile memory on a semiconductor substrate, comprising: a first memory cell comprising a floating-gate transistor and a select transistor having an embedded vertical control gate, a second memory cell comprising a floating-gate transistor and a select transistor having the same control gate as the select transistor of the first memory cell, a first bit line coupled to the floating-gate transistor of the first memory cell, and a second bit line coupled to the floating-gate transistor of the second memory cell.
Abstract:
The present disclosure relates to a non-volatile memory cell on a semiconductor substrate, comprising a first transistor comprising a control gate, a floating gate and a drain region, a second transistor comprising a control gate, a floating gate and a drain region, in which the floating gates of the first and second transistors are electrically coupled, and the second transistor comprises a conducting region electrically coupled to its drain region and extending opposite its floating gate through a tunnel dielectric layer.
Abstract:
A memory cell formed in a semiconductor substrate, includes a selection gate extending vertically in a trench made in the substrate, and isolated from the substrate by a first layer of gate oxide, a horizontal floating gate extending above the substrate and isolated from the substrate by a second layer of gate oxide, and a horizontal control gate extending above the floating gate. The selection gate covers a lateral face of the floating gate. The floating gate is separated from the selection gate only by the first layer of gate oxide, and separated from a vertical channel region, extending in the substrate along the selection gate, only by the second layer of gate oxide.
Abstract:
A memory cell formed in a semiconductor substrate, includes a selection gate extending vertically in a trench made in the substrate, and isolated from the substrate by a first layer of gate oxide, a horizontal floating gate extending above the substrate and isolated from the substrate by a second layer of gate oxide, and a horizontal control gate extending above the floating gate. The selection gate covers a lateral face of the floating gate. The floating gate is separated from the selection gate only by the first layer of gate oxide, and separated from a vertical channel region, extending in the substrate along the selection gate, only by the second layer of gate oxide.
Abstract:
The present disclosure relates to a non-volatile memory on a semiconductor substrate, comprising: a first memory cell comprising a floating-gate transistor and a select transistor having an embedded vertical control gate, a second memory cell comprising a floating-gate transistor and a select transistor having the same control gate as the select transistor of the first memory cell, a first bit line coupled to the floating-gate transistor of the first memory cell, and a second bit line coupled to the floating-gate transistor of the second memory cell.
Abstract:
The disclosure relates to a method of manufacturing vertical gate transistors in a semiconductor substrate, comprising implanting, in the depth of the substrate, a doped isolation layer, to form a source region of the transistors; forming, in the substrate, parallel trench isolations and second trenches perpendicular to the trench isolations, reaching the isolation layer, and isolated from the substrate by a first dielectric layer; depositing a first conductive layer on the surface of the substrate and in the second trenches; etching the first conductive layer to form the vertical gates of the transistors, and vertical gate connection pads between the extremity of the vertical gates and an edge of the substrate, while keeping a continuity zone in the first conductive layer between each connection pad and a vertical gate; and implanting doped regions on each side of the second trenches, to form drain regions of the transistors.