摘要:
Embodiments of the present invention are related to nanowire-based devices that can be configured and operated as modulators, chemical sensors, and light-detection devices. In one aspect, a nanowire-based device includes a reflective member, a resonant cavity surrounded by at least a portion of the reflective member, and at least one nanowire disposed within the resonant cavity. The nanowire includes at least one active segment selectively disposed along the length of the nanowire to substantially coincide with at least one antinode of light resonating within the cavity. The active segment can be configured to interact with the light resonating within the cavity.
摘要:
A Fresnel antenna includes a plurality of Fresnel elements spaced to selectively attenuate electromagnetic waves having a predetermined wavelength, selected wavelengths, or range of wavelengths, and to concentrate electromagnetic waves having a predetermined wavelength, selected wavelengths, or range of wavelengths other than the attenuated wavelengths.
摘要:
Various embodiments of the present invention are directed to external, electronically controllable, negative index material-based modulators. In one aspect, an external modulator comprises a negative index material in electronic communication with an electronic signal source. The negative index material receives an electronic signal encoding data from the electronic signal source and an unmodulated carrier wave from an electromagnetic radiation source. Magnitude variations in the electronic signal produce corresponding effective refractive index changes in the negative index material encoding the data in the amplitude and/or phase of the carrier wave to produce an electromagnetic signal.
摘要:
Various embodiments of the present invention are directed to nanowire-based photodetectors that can be used to convert information encoded in a channel of electromagnetic radiation into a photocurrent encoding the same information. In one embodiment of the present invention, a photodetector comprises a waveguide configured to transmit one or more channels of electromagnetic radiation. The photodetector includes a first terminal and a second terminal. The first terminal and the second terminal are positioned on opposite sides of the waveguide. The photodetector also includes a number of nanowires. Each nanowire interconnects the first terminal to the second terminal and a portion of each nanowire is embedded in the waveguide.
摘要:
An apparatus for controlling propagation of incident electromagnetic radiation is described, comprising a composite material having electromagnetically reactive cells of small dimension relative to a wavelength of the incident electromagnetic radiation. At least one of a capacitive and inductive property of at least one of the electromagnetically reactive cells is temporally controllable to allow temporal control of an associated effective refractive index encountered by the incident electromagnetic radiation while propagating through the composite material.
摘要:
Various embodiments of the present invention relate generally to systems for performing Raman spectroscopy. In one embodiment, a system for performing Raman spectroscopy comprises an analyte holder having a surface configured to retain an analyte and a light concentrator configured to receive an incident beam of light, split the incident beam into one or more beams, and direct the one or more beams to substantially intersect at the surface. The system may also include a collector configured to focus each of the one or more beams onto the surface, collect the Raman scattered light emitted from the analyte, and direct the Raman scattered light away from the surface.
摘要:
Apparatuses and methods for modulating electromagnetic radiation are disclosed. A plasmon waveguide including an array of metallic nanoparticles disposed on a dielectric substrate is provided. The plasmon waveguide is disposed on a MEMS structure. An electromagnetic radiation signal is applied to a tapered fiber disposed proximate the MEMS structure. The intensity of the electromagnetic radiation signal passing through the tapered fiber is modified by displacing a deformable member of the MEMS structure to modify a distance between the plasmon waveguide and the tapered fiber such that an evanescent field of the tapered fiber causes a plasmon resonance in the plasmon waveguide.
摘要:
An apparatus for controlling propagation of incident electromagnetic radiation is described, comprising a composite material having electromagnetically reactive cells of small dimension relative to a wavelength of the incident electromagnetic radiation. At least one of a capacitive and inductive property of at least one of the electromagnetically reactive cells is temporally controllable to allow temporal control of an associated effective refractive index encountered by the incident electromagnetic radiation while propagating through the composite material.
摘要:
Embodiments of the present invention are related to nanowire-based devices that can be configured and operated as modulators, chemical sensors, and light-detection devices. In one aspect, a nanowire-based device includes a reflective member, a resonant cavity surrounded by at least a portion of the reflective member, and at least one nanowire disposed within the resonant cavity. The nanowire includes at least one active segment selectively disposed along the length of the nanowire to substantially coincide with at least one antinode of light resonating within the cavity. The active segment can be configured to interact with the light resonating within the cavity.
摘要:
Materials and methods for fabricating and using negative index materials are disclosed. A negative index material comprises a three-dimensional volume including a bulk solution and a plurality of unit cells disposed in the bulk solution in a substantially random pattern. Each unit cell comprises a periodic hole array pattern on a substrate or a resonator formed on a first surface of a substrate, and a thin wire pattern formed on a second surface of the substrate. The combination of the unit cells in the bulk solution produces a negative effective permeability and a negative effective permittivity over a frequency band of interest for the three-dimensional volume. The negative index material may be used to focus radiation by directing an incident radiation at the negative index material and generating a focused radiation by a negative refraction of the incident radiation in the negative index material.