Selectorless 3D stackable memory
    51.
    发明授权

    公开(公告)号:US10585630B2

    公开(公告)日:2020-03-10

    申请号:US15845985

    申请日:2017-12-18

    Abstract: A memory device and method for providing the memory device are described. The memory device includes word lines, a first plurality of bit lines, a second plurality of bit lines and selectorless memory cells. Each selectorless memory cell is coupled with a word line, a first bit line of the first plurality of bit lines and a second bit line of the second plurality of bit lines. The selectorless memory cell includes first and second magnetic junctions. The first and second magnetic junctions are each programmable using a spin-orbit interaction torque. The word line is coupled between the first and second magnetic junctions. The first and second bit lines are coupled with the first and second magnetic junctions, respectively. The selectorless memory cell is selected for a write operation based on voltages in the word line, the first bit line and the second bit line.

    Dielectric separation of partial GAA FETs

    公开(公告)号:US10566330B2

    公开(公告)日:2020-02-18

    申请号:US15977949

    申请日:2018-05-11

    Abstract: A CMOS system on chip including a series of partial gate-all-around field effect transistors. Each partial GAA FET includes a fin having a stack of channel regions, source and drain regions on opposite sides of the fin, a dielectric separation region including a dielectric material between first and second channel regions, a gate stack on the fin, and a pair of sidewall spacers on opposite sides of the gate stack. A portion of the dielectric separation region has a length from an outer edge of the dielectric separation region to an inner edge of a respective sidewall spacer. The length of the portion of the dielectric separation region of one of the partial GAA FETs is different than the length of the portion of the dielectric separation region of another one of the partial GAA FETs.

    METHOD AND SYSTEM FOR TRAINING OF NEURAL NETS

    公开(公告)号:US20190332943A1

    公开(公告)日:2019-10-31

    申请号:US16122789

    申请日:2018-09-05

    Abstract: A method and system for training a neural network are described. The method includes providing at least one continuously differentiable model of the neural network. The at least one continuously differentiable model is specific to hardware of the neural network. The method also includes iteratively training the neural network using the at least one continuously differentiable model to provide at least one output for the neural network. Each iteration uses at least one output of a previous iteration and a current continuously differentiable model of the at least one continuously differentiable model.

    BI-DIRECTIONAL WEIGHT CELL
    55.
    发明申请

    公开(公告)号:US20190154493A1

    公开(公告)日:2019-05-23

    申请号:US15886753

    申请日:2018-02-01

    Abstract: A weight cell including first and second bi-directional memory elements each configured to switch between a first resistance state and a second resistance state different than the first resistance state. A first input line is connected to a first terminal of the first bi-directional memory element, and a second input line is connected to the first terminal of the second bi-directional memory element. A first diode in forward bias connects the second terminal of the first bi-directional memory element to a first output line, a second diode in reverse bias connects the second terminal of the second bi-directional memory element to a second output line, a third diode in reverse bias connects the second terminal of the first bi-directional memory element to the second output line, and a fourth diode in forward bias connects the second terminal of the second bi-directional memory element to the first output line.

    Strained stacked nanosheet FETs and/or quantum well stacked nanosheet

    公开(公告)号:US10170549B2

    公开(公告)日:2019-01-01

    申请号:US14918954

    申请日:2015-10-21

    Abstract: Exemplary embodiments provide for fabricating a nanosheet stack structure having one or more sub-stacks. Aspects of the exemplary embodiments include: growing an epitaxial crystalline initial stack of one or more sub-stacks, each of the sub-stacks having at least three layers, a sacrificial layer A, and at least two different non-sacrificial layers B and C having different material properties, wherein the non-sacrificial layers B and C layers are kept below a thermodynamic or kinetic critical thickness corresponding to metastability during all processing, and wherein the sacrificial layer An is placed only at a top or a bottom of each of the sub-stacks, and each of the sub-stacks is connected to an adjacent sub-stack at the top or the bottom using one of the sacrificial layers A; proceeding with fabrication flow of nanosheet devices, such that pillar structures are formed at each end of the epitaxial crystalline stack that to hold the nanosheets in place after selective etch of the sacrificial layers; and selectively removing sacrificial layers A to all non-sacrificial layers B and C, while the remaining layers in the stack are held in place by the pillar structures so that after removal of the sacrificial layers An, each of the sub-stacks contains the non-sacrificial layers B and C.

Patent Agency Ranking