摘要:
In an embodiment, a processor includes at least one processor core and power control logic having energy usage logic to predict an energy usage of the processor and a voltage regulator coupled to the processor, during a low power period according to a first voltage regulator control mode and a second voltage regulator control mode, and to control the voltage regulator based at least in part on the predicted energy usage. Other embodiments are described and claimed.
摘要:
In an embodiment, a processor includes a plurality of cores each to independently execute instructions, a plurality of graphics engines each to independently perform graphics operations; and, a power control unit coupled to the plurality of cores to control power consumption of the processor, where the power control unit includes a power excursion control logic to limit a power consumption level of the processor from being above a defined power limit for more than a duty cycle portion of an operating period. Other embodiments are described and claimed.
摘要:
The operating voltage of an integrated circuit (e.g., a processor) is changed in response to one or more conditions (e.g., a laptop computer is connected to an AC power source). Both the operating frequency and the operating voltage of the integrated circuit are changed. The voltage regulator providing the operating voltage to the integrated circuit is caused to transition between voltage levels using one or more intermediate steps. The integrated circuit continues to operate in the normal manner both at the new voltage and throughout the voltage transition.
摘要:
A system and method is provided for establishing safe processor operating points. Some embodiments may include a tamper resistant storage element that stores information regarding one or more operating points of an adjustable processor operating parameter. Some embodiments may further include an element to determine what the current processor operating point is of the operating parameter, and an element to compare the current operating point of the operating parameter with the stored information.
摘要:
According to one embodiment of the invention, an integrated circuit device at least one compute engine and a control unit. Coupled to the compute engine(s), the control unit is adapted to dynamically control an energy-efficient operating setting of at least one power management parameter for the integrated circuit device after execution of Basic Input/Output System (BIOS) has already completed
摘要:
An apparatus, method and system is described herein for providing multiple maximum current configuration options including corresponding turbo frequencies for a processing device. Available options for a processor are determined by initialization code. And based on platform electrical capabilities, an optimal one of the multiple current configuration options is selected. Moreover, during runtime another current configuration is dynamically selected based on current configuration considerations to provide high flexibility and best possible performance per part and computing platform.
摘要:
In one embodiment, the present invention includes a processor having a core and a power controller to control power management features of the processor. The power controller can receive an energy performance bias (EPB) value from the core and access a power-performance tuning table based on the value. Using information from the table, at least one setting of a power management feature can be updated. Other embodiments are described and claimed.
摘要:
A system and method is provided for establishing safe processor operating points. Some embodiments may include a tamper resistant storage element that stores information regarding one or more operating points of an adjustable processor operating parameter. Some embodiments may further include an element to determine what the current processor operating point is of the operating parameter, and an element to compare the current operating point of the operating parameter with the stored information.
摘要:
A method of dynamically adjusting the power consumption of a circuit block within an integrated circuit includes the step of incrementing a count total maintained by a counter on the occurrence of a first type of trigger event. The occurrence of a predetermined event is detected when the count total maintained by the counter equals, or transcends, a predetermined threshold value. The predetermined event provides a speculative indication of a future state of activity of the circuit block by reason of a predicted proximity of the predetermined event to the future state of activity of the circuit block. The power consumption of the circuit block is adjusted in response to the occurrence of the predetermined event.