摘要:
An apparatus for monitoring an ion distribution of a wafer comprises a first sensor and a sensor. The first sensor, the second sensor and the wafer are placed in an effective range of a uniform ion implantation current profile. A controller determines the ion dose of each region of the wafer based upon the detected signal from the first sensor and the second sensor. In addition, the controller adjusts the scanning frequency of an ion beam or the movement speed of the wafer to achieve a uniform ion distribution on the wafer.
摘要:
To provide improved planarization, techniques in accordance with this disclosure include a CMP station that includes a plurality of concentric temperature control elements arranged over a number of concentric to-be-polished wafer surfaces. During polishing, a wafer surface planarity sensor monitors relative heights of the concentric to-be-polished wafer surfaces, and adjusts the temperatures of the concentric temperature control elements to provide an extremely well planarized wafer surface. Other systems and methods are also disclosed.
摘要:
The present disclosure provides a method and apparatus for cleaning a semiconductor wafer. In an embodiment of the method, a single wafer cleaning apparatus is provided and a wafer is positioned in the apparatus. A first chemical spray is dispensed onto a front surface of the wafer. A back surface of the wafer is cleaned while dispensing the first chemical spray. The cleaning of the back surface may include a brush and spray of cleaning fluids. An apparatus operable to clean the front surface and the back surface of a single semiconductor wafer is also described.
摘要:
Methods and apparatus for detecting errors in real time in CMP processing. A method includes disposing a semiconductor wafer onto a wafer carrier in a tool for chemical mechanical polishing (“CMP”); positioning the wafer carrier so that a surface of the semiconductor wafer contacts a polishing pad mounted on a rotating platen; dispensing an abrasive slurry onto the rotating polishing pad while maintaining the surface of the semiconductor wafer in contact with the polishing pad to perform a CMP process on the semiconductor wafer; in real time, receiving signals from the CMP tool into a signal analyzer, the signals corresponding to vibration, acoustics, temperature, or pressure; and comparing the received signals from the CMP tool to expected received signals for normal processing by the CMP tool; outputting a result of the comparing. A CMP tool apparatus is disclosed.
摘要:
A method for fabricating an integrated device is disclosed. A protective layer is formed over a gate structure when forming epitaxial (epi) features adjacent to another gate structure uncovered by the protective layer. The protective layer is thereafter removed after forming the epitaxial (epi) features. The disclosed method provides an improved method for removing the protective layer without substantial defects resulting. In an embodiment, the improved formation method is achieved by providing a protector over an oxide-base material, and then removing the protective layer using a chemical comprising hydrofluoric acid.
摘要:
A method of orienting a semiconductor wafer. The method includes rotating a wafer about a central axis; exposing a plurality of edge portions of the rotating wafer to light having a predetermined wavelength from one or more light sources; detecting a subsurface mark in one of the plurality of edge portions of the rotating wafer; and orienting the wafer using the detected subsurface mark as a reference.
摘要:
A method of making an integrated circuit is provided. The method includes providing a substrate having a photosensitive layer. The photosensitive layer is exposed to a radiation beam. The exposed photosensitive layer is developed in a first chamber. In the first chamber, a cleaning process is performed on the developed photosensitive layer. The cleaning process includes using a rinse solution including at least one of ozone, hydrogen peroxide, and oxalic acid.
摘要:
Semiconductor materials, particularly III-V materials used to form, e.g., a finlike structure can suffer structural damage during chemical mechanical polishing steps. This damage can be reduced or eliminated by oxidizing the damaged surface of the material and then etching away the oxidized material. The etching step can be accomplished simultaneously with a step of etching back a patterned oxide layers, such as a shallow trench isolation layer.
摘要:
The present disclosure provides an apparatus for fabricating a semiconductor device. The apparatus includes a polishing head that is operable to perform a polishing process to a wafer. The apparatus includes a retaining ring that is rotatably coupled to the polishing head. The retaining ring is operable to secure the wafer to be polished. The apparatus includes a soft material component located within the retaining ring. The soft material component is softer than silicon. The soft material component is operable to grind a bevel region of the wafer during the polishing process. The apparatus includes a spray nozzle that is rotatably coupled to the polishing head. The spray nozzle is operable to dispense a cleaning solution to the bevel region of the wafer during the polishing process.
摘要:
Methods and apparatus for a movable megasonic wafer probe. A method is disclosed including positioning a movable probe on a wafer surface, the movable probe having an open bottom portion that exposes a portion of the wafer surface; applying a liquid onto the wafer surface through a bottom portion of the movable probe; and moving the movable probe at a predetermined scan speed to traverse the wafer surface, applying the liquid to the wafer surface while moving over the wafer surface. In additional embodiments the method includes providing a transducer for applying megasonic energy to the wafer surface. Apparatus embodiments are disclosed including the movable megasonic wafer probe.