Abstract:
Embodiments include a system for determining cardiovascular information for a patient. The system may include at least one computer system configured to receive patient-specific data regarding a geometry of the patient's heart, and create a three-dimensional model representing at least a portion of the patient's heart based on the patient-specific data. The at least one computer system may be further configured to create a physics-based model relating to a blood flow characteristic of the patient's heart and determine a fractional flow reserve within the patient's heart based on the three-dimensional model and the physics-based model.
Abstract:
In ultrasonic imaging, a physically consistent value of blood flow velocity is measured in the vicinity of body tissues. The ultrasound imaging apparatus comprises a shape extraction part for recognizing shape data of biological tissues by using echo signals reflected from a test subject irradiated with ultrasonic waves, a flow velocity distribution acquisition part for detecting blood flow velocities in the vicinity of the tissues from the echo signals, and a velocity determination part for extracting velocity information desired by a tester (objective velocity information). The velocity determination part sets a model of the objective blood flow, and determines a velocity of actually measured velocity distribution consistent with velocity distribution estimated from the model.
Abstract:
The ultrasonic sensor includes, on the same substrate, transmitter elements, receiver elements, a potential controller for receiver electrodes of the receiver elements, and a connection switching unit for the receiver electrodes and the potential controller. During the ultrasound transmission period of the transmitter elements, the connection switching unit connects the potential controller and the receiver electrodes. During the reception period of the receiver elements, the connection switching unit disconnects the potential controller and the receiver electrodes.
Abstract:
An inflatable cuff in a blood pressure-measurement system is integrated with a drug delivery device. The drug delivery device is configured to automatically deliver a drug dermally or transdermally to the individual in response to the measured blood pressures.
Abstract:
Systems and methods of extracting information relating to diameter and/or diameter changes in small blood vessels such as arterioles. This information may be used to assess a degree of vasoconstriction and/or vasodilatation. In one method, changes in vessel cross-section due to pulse wave arrival is assessed in both arterioles and in larger arteries. A time delay between the changes and/or a change in time delay is optionally associated with arteriole cross-section and/or changes therein.
Abstract:
Embodiments include a system for determining cardiovascular information for a patient. The system may include at least one computer system configured to receive patient-specific data regarding a geometry of the patient's heart, and create a three-dimensional model representing at least a portion of the patient's heart based on the patient-specific data. The at least one computer system may be further configured to create a physics-based model relating to a blood flow characteristic of the patient's heart and determine a fractional flow reserve within the patient's heart based on the three-dimensional model and the physics-based model.
Abstract:
As different artery blood pressure combination measurement, peripheral blood pressure combination measurement that combines blood vessel diameter measurement to measure a blood vessel diameter as a blood vessel cross-section index value of a central artery as a first artery with peripheral blood pressure measurement to measure blood pressure of a peripheral artery as a second artery is conducted. Then, a parameter for a blood pressure estimation process (for example, a blood vessel hardness parameter or a correlation parameter) that estimates the central aortic blood pressure from the blood vessel diameter of the central artery is corrected by using measurement results of the peripheral blood pressure combination measurement.
Abstract:
Embodiments include a system for determining cardiovascular information for a patient. The system may include at least one computer system configured to receive patient-specific data regarding a geometry of the patient's heart, and create a three-dimensional model representing at least a portion of the patient's heart based on the patient-specific data. The at least one computer system may be further configured to create a physics-based model relating to a blood flow characteristic of the patient's heart and determine a fractional flow reserve within the patient's heart based on the three-dimensional model and the physics-based model.
Abstract:
Embodiments include a system for determining cardiovascular information for a patient. The system may include at least one computer system configured to receive patient-specific data regarding a geometry of the patient's heart, and create a three-dimensional model representing at least a portion of the patient's heart based on the patient-specific data. The at least one computer system may be further configured to create a physics-based model relating to a blood flow characteristic of the patient's heart and determine a fractional flow reserve within the patient's heart based on the three-dimensional model and the physics-based model.