Abstract:
The present invention generally relates to processes for the chemocatalytic conversion of a glucose source to an adipic acid product. The present invention includes processes for the conversion of glucose to an adipic acid product via glucaric acid or derivatives thereof. The present invention also includes processes comprising catalytic oxidation of glucose to glucaric acid or derivative thereof and processes comprising the catalytic hydrodeoxygenation of glucaric acid or derivatives thereof to an adipic acid product. The present invention also includes products produced from adipic acid product and processes for the production thereof from such adipic acid product.
Abstract:
The invention relates to a method for preparing caprolactam comprising recovering a mixture containing 6-aminocaproic acid, from a culture medium comprising biomass, and thereafter cyclising the 6-aminocaproic acid in the presence of superheated steam, thereby forming caprolactam, wherein the weight to weight ratio carbohydrate to 6-aminocaproic acid in said mixture is 0.03 or less.
Abstract:
The present invention generally relates to processes for the chemocatalytic conversion of a glucose source to an adipic acid product. The present invention includes processes for the conversion of glucose to an adipic acid product via glucaric acid or derivatives thereof. The present invention also includes processes comprising catalytic oxidation of glucose to glucaric acid or derivative thereof and processes comprising the catalytic hydrodeoxygenation of glucaric acid or derivatives thereof to an adipic acid product. The present invention also includes products produced from adipic acid product and processes for the production thereof from such adipic acid product.
Abstract:
Processes for producing caprolactam (CL) and derivatives thereof from adipic acid (AA) obtained from fermentation broths containing diammonium adipate (DAA) or monoammonium adipate (MAA).
Abstract:
Methods and systems are provided for converting methane in a feed stream to acetylene. The hydrocarbon stream is introduced into a supersonic reactor and pyrolyzed to convert at least a portion of the methane to acetylene. The reactor effluent stream may be treated to convert acetylene to nitrogen based hydrocarbon compounds such as pyridines. The method includes the reaction of acetylene with ammonia and controlling the ratio of acetylene to ammonia to generate the desired nitrogen based hydrocarbon compound.
Abstract:
The present invention generally relates to processes for the chemocatalytic conversion of a glucose source to an adipic acid product. The present invention includes processes for the conversion of glucose to an adipic acid product via glucaric acid or derivatives thereof. The present invention also includes processes comprising catalytic oxidation of glucose to glucaric acid or derivative thereof and processes comprising the catalytic hydrodeoxygenation of glucaric acid or derivatives thereof to an adipic acid product. The present invention also includes products produced from adipic acid product and processes for the production thereof from such adipic acid product.
Abstract:
Processes for producing caprolactam (CL) and derivatives thereof from adipic acid (AA) obtained from fermentation broths containing diammonium adipate (DAA) or monoammonium adipate (MAA).
Abstract:
A method for preparing lactams by cyclizing hydrolysis of a corresponding aminonitrile is described. A method for manufacturing a lactam by reacting an aminonitrile with water in the presence of a catalyst involving placing the water and the aminonitrile in contact in vapor phase, passing the mixture of vapors through a bed of catalyst arranged in at least one tube forming a reaction chamber and recovering the lactam at the outlet of the tube is also described.
Abstract:
Disclosed are catalysts comprised of platinum and gold. The catalysts are generally useful for the selective oxidation of compositions comprised of a primary alcohol group and at least one secondary alcohol group wherein at least the primary alcohol group is converted to a carboxyl group. More particularly, the catalysts are supported catalysts including particles comprising gold and particles comprising platinum, wherein the molar ratio of platinum to gold is in the range of about 100:1 to about 1:4, the platinum is essentially present as Pt(0) and the platinum-containing particles are of a size in the range of about 2 to about 50 nm. Also disclosed are methods for the oxidative chemocatalytic conversion of carbohydrates to carboxylic acids or derivatives thereof. Additionally, methods are disclosed for the selective oxidation of glucose to glucaric acid or derivatives thereof using catalysts comprising platinum and gold. Further, methods are disclosed for the production of such catalysts.
Abstract:
The present invention generally relates to processes for the chemocatalytic conversion of a glucose source to an adipic acid product. The present invention includes processes for the conversion of glucose to an adipic acid product via glucaric acid or derivatives thereof. The present invention also includes processes comprising catalytic oxidation of glucose to glucaric acid or derivative thereof and processes comprising the catalytic hydrodeoxygenation of glucaric acid or derivatives thereof to an adipic acid product. The present invention also includes products produced from adipic acid product and processes for the production thereof from such adipic acid product.