Abstract:
Methods of marking paper products and marked paper products are provided. Some methods include irradiating the paper product to alter the functionalization of the paper.
Abstract:
A spherical aberration corrector is offered which permits a correction of deviation of the circularity of at least one of an image and a diffraction pattern and a correction of on-axis aberrations to be carried out independently. The spherical aberration corrector (100) is for use with a charged particle beam instrument (1) for obtaining the image and the diffraction pattern and has a hexapole field generating portion (110) for producing plural stages of hexapole fields, an octopole field superimposing portion (120) for superimposing an octopole on at least one of the plural stages of hexapole fields to correct deviation of the circularity of at least one of the image and diffraction pattern, and a deflection portion (130) for deflecting a charged particle beam.
Abstract:
A deceleration apparatus capable of decelerating a short spot beam or a tall ribbon beam is disclosed. In either case, effects tending to degrade the shape of the beam profile are controlled. Caps to shield the ion beam from external potentials are provided. Electrodes whose position and potentials are adjustable are provided, on opposite sides of the beam, to ensure that the shape of the decelerating and deflecting electric fields does not significantly deviate from the optimum shape, even in the presence of the significant space-charge of high current low-energy beams of heavy ions.
Abstract:
Methods of marking paper products and marked paper products are provided. Some methods include irradiating the paper product to alter the functionalization of the paper.
Abstract:
Methods of marking paper products and marked paper products are provided. Some methods include irradiating the paper product to alter the functionalization of the paper.
Abstract:
A particle source in which energy selection occurs by sending a beam of electrically charged particles eccentrically through a lens so that energy dispersion will occur in an image formed by the lens. By projecting this image onto a slit in an energy selecting diaphragm, it is possible to allow only particles in a limited portion of the energy spectrum to pass. Consequently, the passed beam will have a reduced energy spread. The energy dispersed spot is imaged on the slit by a deflector. When positioning the energy dispersed spot on the slit, central beam is deflected from the axis to such an extent that it is stopped by the energy selecting diaphragm. Hereby reflections and contamination resulting from this beam in the region after the diaphragm are avoided. Also electron-electron interaction resulting from the electrons from the central beam interacting with the energy filtered beam in the area of deflector is avoided.
Abstract:
A consumer electronics device can be thermally managed using forced convection. In one embodiment, the present invention includes such a consumer electronics device having a heat sink thermally coupled to a heat source. The device also includes a power supply configured to power an ion wind fan, and an ion wind fan electrically coupled to the power supply. In one embodiment, the electric coupling is temporary using a non-permanent electrical connector, and electrical contact occurs when the ion wind fan is removably retained by a retention mechanism.
Abstract:
The invention comprises a negative ion source method and apparatus used as part of an ion beam injection system, which is used in conjunction with multi-axis charged particle or proton beam radiation therapy of cancerous tumors. The negative ion source preferably includes an inlet port for injection of hydrogen gas into a high temperature plasma chamber. In one embodiment, the plasma chamber includes a magnetic material, which provides a magnetic field barrier between the high temperature plasma chamber and a low temperature plasma region on the opposite side of the magnetic field barrier. An extraction pulse is applied to a negative ion extraction electrode to pull the negative ion beam into a negative ion beam path, which proceeds through a first partial vacuum system, through an ion beam focusing system, into the tandem accelerator, and into a synchrotron.
Abstract:
A hot cathode includes: a hollow external conductor; a hollow internal conductor which is placed coaxially inside the external conductor; and a connection conductor which electrically connects tip end portions of the conductors. A heating current is folded back through the connection conductor to flow in opposite directions in the external conductor and the internal conductor.
Abstract:
The invention comprises a negative ion beam source vacuum method and apparatus used as part of an ion beam injection system, which is used in conjunction with multi-axis charged particle or proton beam radiation therapy of cancerous tumors. The negative ion beam source contains a vacuum chamber isolated by a vacuum barrier from the vacuum tube of the synchrotron. The negative ion beam source vacuum system preferably includes: a first pump turbo molecular pump, a large holding volume, and a semi-continuously operating pump. By only pumping ion beam source vacuum chamber and by only semi-continuously operating the ion beam source vacuum based on sensor readings about the holding volume, the lifetime of the semi-continuously operating pump is extended.