Abstract:
A Raman amplifier according to the present invention comprises a plurality of pumping means using semiconductor lasers of Fabry-Perot, DFB, or DBR type or MOPAs, and pumping lights outputted from the pumping means have different central wavelengths, and interval between the adjacent central wavelength is greater than 6 nm and smaller than 35 nm. An optical repeater according to the present invention comprises the above-mentioned Raman amplifier and adapted to compensate loss in an optical fiber transmission line by the Raman amplifier. In a Raman amplification method according to the present invention, the shorter the central wavelength of the pumping light the higher light power of said pumping light. In the Raman amplifier according to the present invention, when a certain pumping wavelength is defined as a first channel, and second to n-th channels are defined to be arranged with an interval of about 1 THz toward a longer wavelength side, the pumping lights having wavelengths corresponding to the first to n-th channels are multiplexed, and an pumping light having a wavelength spaced apart from the n-th channel by 2 THz or more toward the longer wavelength side is combined with the multiplexed light, thereby forming the pumping light source. The pumping lights having wavelengths corresponding to the channels other than (n-1)-th and (n-2)-th channels may be multiplexed, thereby forming the pumping light source. The pumping lights having wavelengths corresponding to the channels other than (n-2)-th and (n-3)-th channels may be multiplexed, thereby forming the pumping light source.
Abstract:
A method and apparatus for providing broad band Raman amplification with reduced dependence on polarization state and wavelength. Pump beams of adjacent wavelength are perpendicularly polarized to each other. Further, the wavelength spacing between adjacent pump beams is chosen for the given fiber wavelength spectrum and distance between repeater stations such that adjacent pump beams experience the same polarization state evolution as they travel through the fiber.
Abstract:
A Raman amplifier according to the present invention comprises a plurality of pumping means using semiconductor lasers of Fabry-Perot, DFB, or DBR type or MOPAs, and pumping lights outputted from the pumping means have different central wavelengths, and interval between the adjacent central wavelength is greater than 6 nm and smaller than 35 nm. An optical repeater according to the present invention comprises the above-mentioned Raman amplifier and adapted to compensate loss in an optical fiber transmission line by the Raman amplifier. In a Raman amplification method according to the present invention, the shorter the central wavelength of the pumping light the higher light power of said pumping light. In the Raman amplifier according to the present invention, when a certain pumping wavelength is defined as a first channel, and second to n-th channels are defined to be arranged with an interval of about 1 THz toward a longer wavelength side, the pumping lights having wavelengths corresponding to the first to n-th channels are multiplexed, and an pumping light having a wavelength spaced apart from the n-th channel by 2 THz or more toward the longer wavelength side is combined with the multiplexed light, thereby forming the pumping light source. The pumping lights having wavelengths corresponding to the channels other than (nnull1)-th and (nnull2)-th channels may be multiplexed, thereby forming the pumping light source. The pumping lights having wavelengths corresponding to the channels other than (nnull2)-th and (nnull3)-th channels may be multiplexed, thereby forming the pumping light source.
Abstract:
The first present invention provides an optical switch including the following elements. At least a plurality of optical transmission lines are provided for transmissions of optical signals. Each of the at least plurality of optical transmission lines have at least an impurity doped fiber. At least an excitation light source is provided for emitting an excitation light. At least an excitation light switch is provided which is connected to the excitation light source and also connected to the at least plurality of optical transmission lines for individual switching operations to supply the excitation light to the at least plurality of optical transmission lines to feed the excitation light to the impurity doped fiber on the at least plurality of optical transmission lines, thereby causing an excitation of the impurity doped fiber on selected one of the at least plurality of optical transmission lines so as to permit a transmission of the optical signal through the excited impurity doped fiber, whilst unselected one of the impurity doped fibers is unexcited whereby the optical signals are absorbed into the unselected one of the impurity doped fibers thereby to discontinue transmission of the optical signal by the unselected one of the impurity doped fibers.
Abstract:
A long-distance optical transmission system comprising pulse emitter and receiver means (1, 2) and an optical line (3) which extends between said emitter and receiver means (1, 2) and which comprises alternating segments (3a, 3b) of dispersive fibers having chromatic dispersion of opposite signs, and also having a plurality of amplifiers (4), the system being characterized in that the optical line (3) comprises a plurality of pairs of dispersive fiber segments (3a, 3b) having chromatic dispersion of opposite signs between successive amplifiers (4), and in that the cumulative dispersion C over the majority of the segments of the optical line satisfies the relationship (R)nullCnullnullnull2
Abstract:
A method and system for optical amplification suitable for wavelength division multiplexing (WDM). Signal light is amplified to obtain amplified signal light. The amplified signal light is gain equalized so that a deviation in signal-to-noise ratio of the amplified signal light with respect to wavelength is reduced to obtain first equalized signal light. The first equalized signal light is amplified to obtain amplified equalized signal light. The amplified equalized signal light is gain equalized so that a deviation in signal power of the amplified equalized signal light with respect to wavelength is reduced. This method is characterized in that in performing optical amplification of signal light plural times gain equalization is performed in the middle stage of the optical amplification so that the deviation in signal-to-noise ratio is reduced, and gain equalization is performed after the final stage of the optical amplification so that the deviation in signal power is reduced. According to this method, gain equalization can be easily performed on both the deviation in signal power and the deviation in signal-to-noise ratio.
Abstract:
An optical amplifier has an optical amplifying medium, a pump light source outputting pump light, and a first optical coupler for supplying the pump light to the optical amplifying medium. A probe light source outputs probe light having a wavelength included in an amplification band, a second optical coupler supplies the probe light to the optical amplifying medium, and detectors detect the powers of input signal light and the probe light, respectively. A control unit controls the power of the probe light according to outputs from the detectors. This structure makes it possible to provide an optical amplifier which can reduce the wavelength dependence of gain.
Abstract:
A solid state laser device includes a seed laser that outputs continuous wave laser seed light, a light intensity changeable unit that changes a light intensity thereof and outputs seed pulse light, a CW excitation laser that outputs continuous wave excitation light, an amplifier that amplifies the seed pulse light and outputs amplified light based on an amplification gain increased by the excitation light, a wavelength conversion unit that converts a wavelength of the amplified light and outputs harmonic light, and a light intensity control unit that allows the light intensity changeable unit to output the seed pulse light after a certain time elapsed from an input of an external trigger signal each time the signal is input and output suppression light that suppresses an increase of the amplification gain in a period after an output of the seed pulse light until an input of a next external trigger signal.
Abstract:
A laser light-source apparatus includes: a fiber amplifier and a solid-state amplifier to amplify pulse light output from a seed light source serving as a first light source; a nonlinear optical element to perform wavelength conversion on the pulse light output from the solid-state amplifier; an optical switching element to permit or stop propagation of the pulse light from the fiber amplifier to the solid-state amplifier; a second light source disposed on an upstream side of the solid-state amplifier and is configured to output laser light able to be combined with the pulse light output from the seed light source; and a control unit to control the optical switching element in such a manner that the propagation of light is stopped and to perform control in such a manner that the second light source oscillates, at least in an output period of the pulse light from the seed light source.
Abstract:
An infrared non-linear optical crystal has the following molecular formula: A18X21Y6M48, in which A is Ba, Sr or Pb; X is Zn, Cd or Mn; Y is Ga, In or Al; and M is S, Se or Te. The crystal belongs to trigonal system and has space group R3. The crystal Ba18Zn21Ga6S48 is a type I phase matching non-linear optical material, in a particle size range of 150˜210 μm, its powder frequency doubling intensity and the laser damage threshold are respectively 0.5 times and 28 times those of the commercial material AgGaS2. Other crystals have the same or similar structure and properties such as optical property. The infrared non-linear optical crystal of the present application has important prospects in military and civilian applications, and can be used in electro-optical countermeasures, resource detection, space antimissile and communications, etc.